

Advanced Deep Learning
with Keras

Apply deep learning techniques, autoencoders, GANs,
variational autoencoders, deep reinforcement learning,
policy gradients, and more

Rowel Atienza

BIRMINGHAM - MUMBAI

Advanced Deep Learning with Keras

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Frank Pohlmann, Andrew Waldron, Suresh Jain
Content Development Editor: Alex Sorrentino
Technical Editor: Gaurav Gavas
Project Editor: Kishor Rit
Proofreader: Safis Editing
Indexers: Aishwarya Gangawane
Graphics: Tom Scaria
Production Coordinator: Sandip Tadge

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78862-941-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
•	 Learn better with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Mapt is fully searchable
•	 Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.Packt.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
Rowel Atienza is an Associate Professor at the Electrical and Electronics
Engineering Institute of the University of the Philippines, Diliman. He
holds the Dado and Maria Banatao Institute Professorial Chair in Artificial
Intelligence. Rowel has been fascinated with intelligent robots since he graduated
from the University of the Philippines. He received his MEng from the National
University of Singapore for his work on an AI-enhanced four-legged robot. He
finished his Ph.D. at The Australian National University for his contribution on the
field of active gaze tracking for human-robot interaction. Rowel's current research
work focuses on AI and computer vision. He dreams on building useful machines
that can perceive, understand, and reason. To help make his dreams become
real, Rowel has been supported by grants from the Department of Science and
Technology (DOST), Samsung Research Philippines, and Commission on Higher
Education-Philippine California Advanced Research Institutes (CHED-PCARI).

I would like to thank my family, Che, Diwa, and Jacob. They never
cease to support my work.

I would like to thank my mother who instilled into me the value
of education.

I would like to express my gratitude to the people of Packt and this
book's technical reviewer, Frank, Kishor, Alex, and Valerio. They
are inspiring and easy to work with.

I would like to thank the institutions who always support my
teaching and research agenda, University of the Philippines,
DOST, Samsung Research PH, and CHED-PCARI.

I would like to acknowledge my students. They have been patient
as I develop my courses in AI.

About the reviewer
Valerio Maggio is currently a Post-Doc Data Scientist at Fondazione Bruno
Kessler (FBK) in Trento, Italy, responsible for Machine Learning and Deep Learning
in the MPBA lab (Predictive Models for Biomedicine and Environment). Valerio has
a Ph.D. in Computational Science from the University of Naples "Federico II." His
research interests are focused on Machine Learning and Deep Learning applied to
Software Maintenance and Computational Biology. Valerio is very much involved
in the scientific Python community, and he is an active speaker at many Python
conference.

He is also the lead organiser of PyCon Italy/PyData Florence, and EuroSciPy.
He uses Python as the mainstream language for his deep/machine learning code,
making an intensive use of Python to analyse, visualise, and learn from data. In the
context of Deep Learning, Valerio is the author of a quite popular Keras/TensorFlow
tutorial, publicly available on his GitHub Profile – github.com/leriomaggio/deep-
learning-keras-tensorflow – and presented in many conferences (EuroSciPy,
PyData London, PySS) and University courses. Valerio is also passionate about
(black) tea, and an "old-school" Magic The Gathering (MTG) player, who enjoys
playing and teaching MTG to newbies.

Packt is Searching for Authors Like You
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://github.com/leriomaggio/deep-learning-keras-tensorflow
http://github.com/leriomaggio/deep-learning-keras-tensorflow
http://authors.packtpub.com/
http://authors.packtpub.com/

[i]

Table of Contents
Preface� V
Chapter 1: Introducing Advanced Deep Learning with Keras� 1

Why is Keras the perfect deep learning library?� 2
Installing Keras and TensorFlow� 3

Implementing the core deep learning models - MLPs,
CNNs and RNNs� 4

The difference between MLPs, CNNs, and RNNs� 5
Multilayer perceptrons (MLPs)� 6

MNIST dataset� 6
MNIST digits classifier model� 8

Building a model using MLPs and Keras� 12
Regularization� 14
Output activation and loss function� 15
Optimization� 17
Performance evaluation� 20
Model summary� 21

Convolutional neural networks (CNNs)� 23
Convolution� 26
Pooling operations� 27
Performance evaluation and model summary� 28

Recurrent neural networks (RNNs)� 31
Conclusion� 37

Chapter 2: Deep Neural Networks� 39
Functional API� 40

Creating a two-input and one-output model� 43

Table of Contents

[ii]

Deep residual networks (ResNet)� 49
ResNet v2� 59
Densely connected convolutional networks (DenseNet)� 62

Building a 100-layer DenseNet-BC for CIFAR10� 65
Conclusion� 68
References� 69

Chapter 3: Autoencoders� 71
Principles of autoencoders� 72
Building autoencoders using Keras� 74
Denoising autoencoder (DAE)� 84
Automatic colorization autoencoder� 89
Conclusion� 97
References� 97

Chapter 4: Generative Adversarial Networks (GANs)� 99
An overview of GANs� 99
Principles of GANs� 100
GAN implementation in Keras� 105
Conditional GAN� 114
Conclusion� 124
References� 124

Chapter 5: Improved GANs� 125
Wasserstein GAN� 126

Distance functions� 126
Distance function in GANs� 128
Use of Wasserstein loss� 131
WGAN implementation using Keras� 135

Least-squares GAN (LSGAN)� 142
Auxiliary classifier GAN (ACGAN)� 147
Conclusion� 160
References� 160

Chapter 6: Disentangled Representation GANs� 161
Disentangled representations� 162
InfoGAN� 164
Implementation of InfoGAN in Keras� 167
Generator outputs of InfoGAN� 177
StackedGAN� 179
Implementation of StackedGAN in Keras� 181
Generator outputs of StackedGAN� 197
Conclusion� 200
Reference� 201

Table of Contents

[iii]

Chapter 7: Cross-Domain GANs� 203
Principles of CycleGAN� 204
The CycleGAN Model� 207
Implementing CycleGAN using Keras� 211

Generator outputs of CycleGAN� 225
CycleGAN on MNIST and SVHN datasets� 227

Conclusion� 234
References� 235

Chapter 8: Variational Autoencoders (VAEs)� 237
Principles of VAEs� 238

Variational inference� 239
Core equation� 240
Optimization� 241
Reparameterization trick� 242
Decoder testing� 243
VAEs in Keras� 244
Using CNNs for VAEs� 249

Conditional VAE (CVAE)� 254
β -VAE: VAE with disentangled latent representations� 264
Conclusion� 268
References� 268

Chapter 9: Deep Reinforcement Learning� 271
Principles of reinforcement learning (RL)� 272
The Q value� 274
Q-Learning example� 276
Q-Learning in Python� 281
Nondeterministic environment� 287
Temporal-difference learning� 287
Q-Learning on OpenAI gym� 288
Deep Q-Network (DQN)� 293
DQN on Keras� 296
Double Q-Learning (DDQN)� 302

Conclusion� 304
References� 305

Chapter 10: Policy Gradient Methods� 307
Policy gradient theorem� 308
Monte Carlo policy gradient (REINFORCE) method� 311

REINFORCE with baseline method� 313
Actor-Critic method� 315
Advantage Actor-Critic (A2C) method� 317

Table of Contents

[iv]

Policy Gradient methods with Keras� 318
Performance evaluation of policy gradient methods� 335

Conclusion� 341
References� 341

Other Books You May Enjoy� 343
Index� 347

[v]

Preface
In recent years, deep learning has made unprecedented success stories in difficult
problems in vision, speech, natural language processing and understanding,
and all other areas with abundance of data. The interest in this field by companies,
universities, governments, and research organizations has accelerated the advances
in the field. This book covers select important advances in deep learning. The
advanced theories are explained by giving a background of the principles, digging
into the intuition behind the concepts, implementing the equations and algorithms
using Keras, and examining the results.

Artificial Intelligence (AI), as it stands today, is still far from being a well-
understood field. Deep learning, as a sub field of AI, is in the same position.
While it is far from being a mature field, many real-world applications such
as vision-based detection and recognition, product recommendation, speech
recognition and synthesis, energy conservation, drug discovery, finance, and
marketing are already using deep learning algorithms. Many more applications
will be discovered and built. The aim of this book is to explain advanced concepts,
give sample implementations, and let the readers, as experts in their field, identify
the target applications.

A field that is not completely mature is a double-edged sword. On one edge, it
offers a lot of opportunities for discovery and exploitation. There are many unsolved
problems in deep learning. This translates into opportunities to be the first to market
– product development, publication, or recognition. The other edge is that it would
be difficult to trust a not completely well-understood field in a mission-critical
environment. We can safely say that if asked, very few machine learning engineers
will ride an auto-pilot plane controlled by a deep learning system. There is a lot of
work to be done to gain this level of trust. The advanced concepts that are discussed
in this book have a high chance of playing a major role as the foundation in gaining
this level of trust.

Preface

[vi]

Every book in deep learning will not be able to completely cover the whole
field. This book is not an exception. Given the time and space, we could have
touched interesting areas such as detection, segmentation and recognition,
visual understanding, probabilistic reasoning, natural language processing and
understanding, speech synthesis, and automated machine learning. However,
this book believes in choosing and explaining select areas so that readers can
take up other fields that are not covered.

As the reader is about to read the rest of this book, they need to keep in mind that
they chose an area that is exciting and can have a huge impact on the society. We
are fortunate to have a job that we look forward to working on as we wake up in
the morning.

Who this book is for
The book is intended for machine learning engineers and students who would
like to gain a better understanding of advanced topics in deep learning. Each
discussion is supplemented with code implementation in Keras. This book is for
readers who would like to understand how to translate theory into a working code
implementation in Keras. Apart from understanding theories, code implementation
is usually one of the difficult tasks in applying machine learning to real-world
problems.

What this book covers
Chapter 1, Introducing Advanced Deep Learning with Keras, covers the key concepts
of deep learning such as optimization, regularization, loss functions, fundamental
layers, and networks and their implementation in Keras. This chapter also serves
as a review of both deep learning and Keras using sequential API.

Chapter 2, Deep Neural Networks, discusses the functional API of Keras. Two
widely-used deep network architectures, ResNet and DenseNet, are examined
and implemented in Keras, using functional API.

Chapter 3, Autoencoders, covers a common network structure called autoencoder
that is used to discover the latent representation of the input data. Two example
applications of autoencoders, denoising and colorization, are discussed and
implemented in Keras.

Chapter 4, Generative Adversarial Networks (GANs), discusses one of the recent
significant advances in deep learning. GAN is used to generate new synthetic
data that appear real. This chapter explains the principles of GAN. Two
examples of GAN, DCGAN and CGAN, are examined and implemented in Keras.

Preface

[vii]

Chapter 5, Improved GANs, covers algorithms that improve the basic GAN. The
algorithms address the difficulty in training GANs and improve the perceptual
quality of synthetic data. WGAN, LSGAN, and ACGAN are discussed and
implemented in Keras.

Chapter 6, Disentangled Representation GANs, discusses how to control the attributes
of the synthetic data generated by GANs. The attributes can be controlled if the latent
representations are disentangled. Two techniques in disentangling representations,
InfoGAN and StackedGAN, are covered and implemented in Keras.

Chapter 7, Cross-Domain GANs, covers a practical application of GANs, translating
images from one domain to another or commonly known as cross-domain transfer.
CycleGAN, a widely used cross-domain GAN, is discussed and implemented in
Keras. This chapter also demonstrates CycleGAN performing colorization and
style transfer.

Chapter 8, Variational Autoencoders (VAEs), discusses another recent significant
advance in deep learning. Similar to GAN, VAE is a generative model that is
used to produce synthetic data. Unlike GAN, VAE focuses on decodable continuous
latent space that is suitable for variational inference. VAE and its variations,
CVAE and β -VAE, are covered and implemented in Keras.

Chapter 9, Deep Reinforcement Learning, explains the principles of reinforcement
learning and Q-Learning. Two techniques in implementing Q-Learning for
discrete action spaces are presented, Q Table update and Deep Q Network (DQN).
Implementation of Q-Learning using Python and DQN in Keras are demonstrated
in OpenAI gym environments.

Chapter 10, Policy Gradient Methods, explains how to use neural networks to learn the
policy for decision making in reinforcement learning. Four methods are covered and
implemented in Keras and OpenAI gym environment, REINFORCE, REINFORCE
with Baseline, Actor-Critic, and Advantage Actor-Critic. The example presented in
this chapter demonstrates policy gradient methods on a continuous action space.

To get the most out of this book
•	 Deep learning and Python: The reader should have a fundamental

knowledge of deep learning and its implementation in Python. While
previous experience in using Keras to implement deep learning algorithms
is important, it is not required. Chapter 1, Introducing Advanced Deep Learning
with Keras offers a review of deep learning concepts and their implementation
in Keras.

Preface

[viii]

•	 Math: The discussions in this book assume that the reader is familiar
with calculus, linear algebra, statistics, and probability at the college level.

•	 GPU: Majority of the Keras implementations in this book require GPU.
Without GPU, it is not practical to execute many of the code examples
because of the time involved (many hours to days). The examples in this
book use reasonable data size as much as possible in order to minimize
the use of high-performance computers. The reader is expected to have
access to at least NVIDIA GTX 1060.

•	 Editor: The code examples in this book were edited using vim in Ubuntu
Linux 16.04 LTS, Ubuntu Linux 17.04, and macOS High Sierra. Any Python-
aware text editor is acceptable.

•	 Tensorflow: Keras requires a backend. The code examples in this book
were written in Keras with TensorFlow backend. Please ensure that the
GPU driver and tensorflow are both installed properly.

•	 GitHub: We learn by example and experimentation. Please git pull
or fork the code bundle for the book from its GitHub repository. After
getting the code, examine it. Run it. Change it. Run it again. Do all creative
experiments by tweaking the code examples. It is the only way to appreciate
all the theories explained in the chapters. Giving a star on the book GitHub
repository is also highly appreciated.

Download the example code files
The code bundle for the book is hosted on GitHub at

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781788629416_ColorImages.pdf.

Conventions used
The code examples in this book are in Python. More specifically, python3. The
color scheme is based on vim syntax highlighting. Consider the following example:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788629416_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629416_ColorImages.pdf

Preface

[ix]

def encoder_layer(inputs,
 filters=16,
 kernel_size=3,
 strides=2,
 activation='relu',
 instance_norm=True):
 """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
 IN is optional, LeakyReLU may be replaced by ReLU

 """

 conv = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')

 x = inputs
 if instance_norm:
 x = InstanceNormalization()(x)
 if activation == 'relu':
 x = Activation('relu')(x)
 else:
 x = LeakyReLU(alpha=0.2)(x)
 x = conv(x)
 return x

Whenever possible, docstring is included. At the very least, text comment is used
to minimize space usage.

Any command-line code execution is written as follows:

$ python3 dcgan-mnist-4.2.1.py

The example code file naming is: algorithm-dataset-chapter.section.number.
py. The command-line example is DCGAN on MNIST dataset in Chapter 4, second
section and first listing. In some cases, the explicit command line to execute is not
written but it is assumed to be:

$ python3 name-of-the-file-in-listing

The file name of the code example is included in the Listing caption.

Preface

[x]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

[1]

Introducing Advanced Deep
Learning with Keras

In this first chapter, we will introduce the three deep learning artificial neural
networks that we will be using throughout the book. These deep learning models
are MLPs, CNNs, and RNNs, which are the building blocks to the advanced deep
learning topics covered in this book, such as Autoencoders and GANs.

Together, we'll implement these deep learning models using the Keras library in
this chapter. We'll start by looking at why Keras is an excellent choice as a tool for
us. Next, we'll dig into the installation and implementation details within the three
deep learning models.

This chapter will:

•	 Establish why the Keras library is a great choice to use for advanced
deep learning

•	 Introduce MLPs, CNNs, and RNNs – the core building blocks of most
advanced deep learning models, which we'll be using throughout this book

•	 Provide examples of how to implement MLPs, CNNs, and RNNs using Keras
and TensorFlow

•	 Along the way, start to introduce important deep learning concepts,
including optimization, regularization, and loss function

By the end of this chapter, we'll have the fundamental deep learning models
implemented using Keras. In the next chapter, we'll get into the advanced
deep learning topics that build on these foundations, such as Deep Networks,
Autoencoders, and GANs.

Introducing Advanced Deep Learning with Keras

[2]

Why is Keras the perfect deep
learning library?
Keras [Chollet, François. "Keras (2015)." (2017)] is a popular deep learning library with
over 250,000 developers at the time of writing, a number that is more than doubling
every year. Over 600 contributors actively maintain it. Some of the examples we'll
use in this book have been contributed to the official Keras GitHub repository.
Google's TensorFlow, a popular open source deep learning library, uses Keras as
a high-level API to its library. In the industry, Keras is used by major technology
companies like Google, Netflix, Uber, and NVIDIA. In this chapter, we introduce
how to use Keras Sequential API.

We have chosen Keras as our tool of choice to work within this book because Keras
is a library dedicated to accelerating the implementation of deep learning models.
This makes Keras ideal for when we want to be practical and hands-on, such as
when we're exploring the advanced deep learning concepts in this book. Because
Keras is intertwined with deep learning, it is essential to learn the key concepts
of deep learning before someone can maximize the use of Keras libraries.

All examples in this book can be found on GitHub at the following link:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras.

Keras is a deep learning library that enables us to build and train models efficiently.
In the library, layers are connected to one another like pieces of Lego, resulting
in a model that is clean and easy to understand. Model training is straightforward
requiring only data, a number of epochs of training, and metrics to monitor. The
end result is that most deep learning models can be implemented with a significantly
smaller number of lines of code. By using Keras, we'll gain productivity by saving
time in code implementation which can instead be spent on more critical tasks
such as formulating better deep learning algorithms. We're combining Keras with
deep learning, as it offers increased efficiency when introduced with the three deep
learning networks that we will introduce in the following sections of this chapter.

Likewise, Keras is ideal for the rapid implementation of deep learning models, like the
ones that we will be using in this book. Typical models can be built in few lines of
code using the Sequential Model API. However, do not be misled by its simplicity.
Keras can also build more advanced and complex models using its API and Model
and Layer classes which can be customized to satisfy unique requirements. Functional
API supports building graph-like models, layers reuse, and models that are behaving
like Python functions. Meanwhile, Model and Layer classes provide a framework for
implementing uncommon or experimental deep learning models and layers.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 1

[3]

Installing Keras and TensorFlow
Keras is not an independent deep learning library. As shown in Figure 1.1.1, it is
built on top of another deep learning library or backend. This could be Google's
TensorFlow, MILA's Theano or Microsoft's CNTK. Support for Apache's MXNet is
nearly completed. We'll be testing examples in this book on a TensorFlow backend
using Python 3. This due to the popularity of TensorFlow, which makes it a common
backend.

We can easily switch from one back-end to another by editing the Keras
configuration file .keras/keras.json in Linux or macOS. Due to the differences
in the way low-level algorithms are implemented, networks can often have different
speeds on different backends.

On hardware, Keras runs on a CPU, GPU, and Google's TPU. In this book,
we'll be testing on a CPU and NVIDIA GPUs (Specifically, the GTX 1060 and
GTX 1080Ti models).

Figure 1.1.1: Keras is a high-level library that sits on top of other deep learning models.
Keras is supported on CPU, GPU, and TPU.

Before proceeding with the rest of the book, we need to ensure that Keras
and TensorFlow are correctly installed. There are multiple ways to perform
the installation; one example is installing using pip3:

$ sudo pip3 install tensorflow

If we have a supported NVIDIA GPU, with properly installed drivers, and
both NVIDIA's CUDA Toolkit and cuDNN Deep Neural Network library,
it is recommended that we install the GPU-enabled version since it can accelerate
both training and prediction:

$ sudo pip3 install tensorflow-gpu

Introducing Advanced Deep Learning with Keras

[4]

The next step for us is to then install Keras:

$ sudo pip3 install keras

The examples presented in this book will require additional packages, such as
pydot, pydot_ng, vizgraph, python3-tk and matplotlib. We'll need to install these
packages before proceeding beyond this chapter.

The following should not generate any error if both TensorFlow and Keras are
installed along with their dependencies:

$ python3

>>> import tensorflow as tf

>>> message = tf.constant('Hello world!')

>>> session = tf.Session()

>>> session.run(message)

b'Hello world!'

>>> import keras.backend as K

Using TensorFlow backend.

>>> print(K.epsilon())

1e-07

The warning message about SSE4.2 AVX AVX2 FMA, which is similar to the one
below can be safely ignored. To remove the warning message, you'll need to
recompile and install the TensorFlow source code from https://github.com/
tensorflow/tensorflow.

tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports
instructions that this TensorFlow binary was not compiled to use:
SSE4.2 AVX AVX2 FMA

This book does not cover the complete Keras API. We'll only be covering the
materials needed to explain the advanced deep learning topics in this book. For
further information, we can consult the official Keras documentation, which can
be found at https://keras.io.

Implementing the core deep learning
models - MLPs, CNNs, and RNNs
We've already mentioned that we'll be using three advanced deep learning models,
they are:

•	 MLPs: Multilayer perceptrons

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://keras.io

Chapter 1

[5]

•	 RNNs: Recurrent neural networks
•	 CNNs: Convolutional neural networks

These are the three networks that we will be using throughout this book. Despite
the three networks being separate, you'll find that they are often combined together
in order to take advantage of the strength of each model.

In the following sections of this chapter, we'll discuss these building blocks one by
one in more detail. In the following sections, MLPs are covered together with other
important topics such as loss function, optimizer, and regularizer. Following on
afterward, we'll cover both CNNs and RNNs.

The difference between MLPs, CNNs,
and RNNs
Multilayer perceptrons or MLPs are a fully-connected network. You'll often find
them referred to as either deep feedforward networks or feedforward neural
networks in some literature. Understanding these networks in terms of known
target applications will help us get insights about the underlying reasons for the
design of the advanced deep learning models. MLPs are common in simple logistic
and linear regression problems. However, MLPs are not optimal for processing
sequential and multi-dimensional data patterns. By design, MLPs struggle to
remember patterns in sequential data and requires a substantial number of
parameters to process multi-dimensional data.

For sequential data input, RNNs are popular because the internal design allows
the network to discover dependency in the history of data that is useful for
prediction. For multi-dimensional data like images and videos, a CNN excels
in extracting feature maps for classification, segmentation, generation, and other
purposes. In some cases, a CNN in the form of a 1D convolution is also used for
networks with sequential input data. However, in most deep learning models,
MLPs, RNNs, and CNNs are combined to make the most out of each network.

MLPs, RNNs, and CNNs do not complete the whole picture of deep networks.
There is a need to identify an objective or loss function, an optimizer, and a regularizer.
The goal is to reduce the loss function value during training since it is a good guide
that a model is learning. To minimize this value, the model employs an optimizer.
This is an algorithm that determines how weights and biases should be adjusted
at each training step. A trained model must work not only on the training data but
also on a test or even on unforeseen input data. The role of the regularizer is to
ensure that the trained model generalizes to new data.

Introducing Advanced Deep Learning with Keras

[6]

Multilayer perceptrons (MLPs)
The first of the three networks we will be looking at is known as a multilayer
perceptrons or (MLPs). Let's suppose that the objective is to create a neural network
for identifying numbers based on handwritten digits. For example, when the input
to the network is an image of a handwritten number 8, the corresponding prediction
must also be the digit 8. This is a classic job of classifier networks that can be trained
using logistic regression. To both train and validate a classifier network, there must
be a sufficiently large dataset of handwritten digits. The Modified National Institute
of Standards and Technology dataset or MNIST [1] for short, is often considered
as the Hello World! of deep learning and is a suitable dataset for handwritten digit
classification.

Before we discuss the multilayer perceptron model, it's essential that we understand
the MNIST dataset. A large number of the examples in this book use the MNIST
dataset. MNIST is used to explain and validate deep learning theories because
the 70,000 samples it contains are small, yet sufficiently rich in information:

Figure 1.3.1: Example images from the MNIST dataset. Each image is 28 × 28-pixel grayscale.

MNIST dataset
MNIST is a collection of handwritten digits ranging from the number 0 to 9. It
has a training set of 60,000 images, and 10,000 test images that are classified into
corresponding categories or labels. In some literature, the term target or ground
truth is also used to refer to the label.

Chapter 1

[7]

In the preceding figure sample images of the MNIST digits, each being sized at
28 X 28-pixel grayscale, can be seen. To use the MNIST dataset in Keras, an API is
provided to download and extract images and labels automatically. Listing 1.3.1
demonstrates how to load the MNIST dataset in just one line, allowing us to both
count the train and test labels and then plot random digit images.

Listing 1.3.1, mnist-sampler-1.3.1.py. Keras code showing how to access MNIST
dataset, plot 25 random samples, and count the number of labels for train and test
datasets:

import numpy as np
from keras.datasets import mnist
import matplotlib.pyplot as plt

load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

count the number of unique train labels
unique, counts = np.unique(y_train, return_counts=True)
print("Train labels: ", dict(zip(unique, counts)))

count the number of unique test labels
unique, counts = np.unique(y_test, return_counts=True)
print("Test labels: ", dict(zip(unique, counts)))

sample 25 mnist digits from train dataset
indexes = np.random.randint(0, x_train.shape[0], size=25)
images = x_train[indexes]
labels = y_train[indexes]

plot the 25 mnist digits
plt.figure(figsize=(5,5))
for i in range(len(indexes)):
 plt.subplot(5, 5, i + 1)
 image = images[i]
 plt.imshow(image, cmap='gray')
 plt.axis('off')

plt.show()
plt.savefig("mnist-samples.png")
plt.close('all')

The mnist.load_data() method is convenient since there is no need to load all
70,000 images and labels individually and store them in arrays. Executing python3
mnist-sampler-1.3.1.py on command line prints the distribution of labels in the
train and test datasets:

Introducing Advanced Deep Learning with Keras

[8]

Train labels: {0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6:
5918, 7: 6265, 8: 5851, 9: 5949}

Test labels: {0: 980, 1: 1135, 2: 1032, 3: 1010, 4: 982, 5: 892, 6: 958,
7: 1028, 8: 974, 9: 1009}

Afterward, the code will plot 25 random digits as shown in the preceding figure,
Figure 1.3.1.

Before discussing the multilayer perceptron classifier model, it is essential to keep in
mind that while MNIST data are 2D tensors, they should be reshaped accordingly
depending on the type of input layer. The following figure shows how a 3 × 3
grayscale image is reshaped for MLPs, CNNs, and RNNs input layers:

Figure 1.3.2: An input image similar to the MNIST data is reshaped depending on the type of input layer.
For simplicity, reshaping of a 3 × 3 grayscale image is shown.

MNIST digits classifier model
The proposed MLP model shown in Figure 1.3.3 can be used for MNIST digit
classification. When the units or perceptrons are exposed, the MLP model is a fully
connected network as shown in Figure 1.3.4. It will also be shown how the output of
the perceptron is computed from inputs as a function of weights, wi and bias, bn for
the nth unit. The corresponding Keras implementation is illustrated in Listing 1.3.2.

Chapter 1

[9]

Figure 1.3.3: MLP MNIST digit classifier model

Figure 1.3.4: The MLP MNIST digit classifier in Figure 1.3.3 is made up of fully connected layers. For simplicity,
the activation and dropout are not shown. One unit or perceptron is also shown.

Introducing Advanced Deep Learning with Keras

[10]

Listing 1.3.2, mlp-mnist-1.3.2.py shows the Keras implementation of the MNIST
digit classifier model using MLP:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

network parameters
batch_size = 128
hidden_units = 256
dropout = 0.45

model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
this is the output for one-hot vector

Chapter 1

[11]

model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

loss function for one-hot vector
use of adam optimizer
accuracy is a good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

validate the model on test dataset to determine generalization
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Before discussing the model implementation, the data must be in the correct shape
and format. After loading the MNIST dataset, the number of labels is computed as:

compute the number of labels
num_labels = len(np.unique(y_train))

Hard coding num_labels = 10 is also an option. But, it's always a good practice to
let the computer do its job. The code assumes that y_train has labels 0 to 9.

At this point, the labels are in digits format, 0 to 9. This sparse scalar representation
of labels is not suitable for the neural network prediction layer that outputs
probabilities per class. A more suitable format is called a one-hot vector, a 10-dim
vector with all elements 0, except for the index of the digit class. For example, if the
label is 2, the equivalent one-hot vector is [0,0,1,0,0,0,0,0,0,0]. The first label
has index 0.

The following lines convert each label into a one-hot vector:

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

In deep learning, data is stored in tensors. The term tensor applies to a scalar (0D
tensor), vector (1D tensor), matrix (2D tensor), and a multi-dimensional tensor.
From this point, the term tensor is used unless scalar, vector, or matrix makes the
explanation clearer.

Introducing Advanced Deep Learning with Keras

[12]

The rest computes the image dimensions, input_size of the first Dense layer and
scales each pixel value from 0 to 255 to range from 0.0 to 1.0. Although raw pixel
values can be used directly, it is better to normalize the input data as to avoid large
gradient values that could make training difficult. The output of the network is also
normalized. After training, there is an option to put everything back to the integer
pixel values by multiplying the output tensor by 255.

The proposed model is based on MLP layers. Therefore, the input is expected to
be a 1D tensor. As such, x_train and x_test are reshaped to [60000, 28 * 28] and
[10000, 28 * 28], respectively.

image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

Building a model using MLPs and Keras
After data preparation, building the model is next. The proposed model is made of
three MLP layers. In Keras, an MLP layer is referred to as Dense, which stands for
the densely connected layer. Both the first and second MLP layers are identical in
nature with 256 units each, followed by relu activation and dropout. 256 units are
chosen since 128, 512 and 1,024 units have lower performance metrics. At 128 units,
the network converges quickly, but has a lower test accuracy. The added number
units for 512 or 1,024 does not increase the test accuracy significantly.

The number of units is a hyperparameter. It controls the capacity of the network.
The capacity is a measure of the complexity of the function that the network can
approximate. For example, for polynomials, the degree is the hyperparameter.
As the degree increases, the capacity of the function also increases.

As shown in the following model, the classifier model is implemented using
a sequential model API of Keras. This is sufficient if the model requires one input
and one output processed by a sequence of layers. For simplicity, we'll use this in
the meantime, however, in Chapter 2, Deep Neural Networks, the Functional API of
Keras will be introduced to implement advanced deep learning models.

model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))

Chapter 1

[13]

model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
this is the output for one-hot vector
model.add(Activation('softmax'))

Since a Dense layer is a linear operation, a sequence of Dense layers can only
approximate a linear function. The problem is that the MNIST digit classification is
inherently a non-linear process. Inserting a relu activation between Dense layers will
enable MLPs to model non-linear mappings. relu or Rectified Linear Unit (ReLU)
is a simple non-linear function. It's very much like a filter that allows positive inputs
to pass through unchanged while clamping everything else to zero. Mathematically,
relu is expressed in the following equation and plotted in Figure 1.3.5:

relu(x) = max(0,x)

Figure 1.3.5: Plot of ReLU function. The ReLU function introduces non-linearity in neural networks.

Introducing Advanced Deep Learning with Keras

[14]

There are other non-linear functions that can be used such as elu, selu, softplus,
sigmoid, and tanh. However, relu is the most commonly used in the industry and
is computationally efficient due to its simplicity. The sigmoid and tanh are used
as activation functions in the output layer and described later. Table 1.3.1 shows
the equation for each of these activation functions:

relu relu(x) = max(0,x) 1.3.1
softplus softplus(x) = log(1 + ex) 1.3.2
elu

() ()
0

,
1x

x if x
elu x a

a e otherwise

≥=  −
where 0a ≥ and is a tunable hyperparameter

1.3.3

selu selu(x) = k × elu(x,a)

where k = 1.0507009873554804934193349852946 and
a = 1.6732632423543772848170429916717

1.3.4

Table 1.3.1: Definition of common non-linear activation functions

Regularization
A neural network has the tendency to memorize its training data especially
if it contains more than enough capacity. In such a case, the network fails
catastrophically when subjected to the test data. This is the classic case of the
network failing to generalize. To avoid this tendency, the model uses a regularizing
layer or function. A common regularizing layer is referred to as a dropout.

The idea of dropout is simple. Given a dropout rate (here, it is set to dropout=0.45),
the Dropout layer randomly removes that fraction of units from participating in
the next layer. For example, if the first layer has 256 units, after dropout=0.45 is
applied, only (1 - 0.45) * 256 units = 140 units from layer 1 participate in layer 2.
The Dropout layer makes neural networks robust to unforeseen input data because
the network is trained to predict correctly, even if some units are missing. It's worth
noting that dropout is not used in the output layer and it is only active during
training. Moreover, dropout is not present during prediction.

There are regularizers that can be used other than dropouts like l1 or l2. In Keras,
the bias, weight and activation output can be regularized per layer. l1 and l2 favor
smaller parameter values by adding a penalty function. Both l1 and l2 enforce
the penalty using a fraction of the sum of absolute (l1) or square (l2) of parameter
values. In other words, the penalty function forces the optimizer to find parameter
values that are small. Neural networks with small parameter values are more
insensitive to the presence of noise from within the input data.

Chapter 1

[15]

As an example, l2 weight regularizer with fraction=0.001 can be implemented as:

from keras.regularizers import l2
model.add(Dense(hidden_units,
 kernel_regularizer=l2(0.001),
 input_dim=input_size))

No additional layer is added if l1 or l2 regularization is used. The regularization
is imposed in the Dense layer internally. For the proposed model, dropout still has
a better performance than l2.

Output activation and loss function
The output layer has 10 units followed by softmax activation. The 10 units
correspond to the 10 possible labels, classes or categories. The softmax activation
can be expressed mathematically as shown in the following equation:

() 1

0

i

j

x

i N x
j

esoftmax x
e−

=

=
∑

 (Equation 1.3.5)

The equation is applied to all N = 10 outputs, xi for i = 0, 1 … 9 for the final prediction.
The idea of softmax is surprisingly simple. It squashes the outputs into probabilities
by normalizing the prediction. Here, each predicted output is a probability that the
index is the correct label of the given input image. The sum of all the probabilities for
all outputs is 1.0. For example, when the softmax layer generates a prediction, it will
be a 10-dim 1D tensor that may look like the following output:

[3.57351579e-11 7.08998016e-08 2.30154569e-07 6.35787558e-07

 5.57471187e-11 4.15353840e-09 3.55973775e-16 9.99995947e-01

 1.29531730e-09 3.06023480e-06]

The prediction output tensor suggests that the input image is going to be 7 given
that its index has the highest probability. The numpy.argmax() method can be used
to determine the index of the element with the highest value.

There are other choices of output activation layer, like linear, sigmoid, and tanh. The
linear activation is an identity function. It copies its input to its output. The sigmoid
function is more specifically known as a logistic sigmoid. This will be used if the
elements of the prediction tensor should be mapped between 0.0 and 1.0 independently.
The summation of all elements of the predicted tensor is not constrained to 1.0 unlike in
softmax. For example, sigmoid is used as the last layer in sentiment prediction (0.0 is
bad to 1.0, which is good) or in image generation (0.0 is 0 to 1.0 is 255-pixel values).

Introducing Advanced Deep Learning with Keras

[16]

The tanh function maps its input in the range -1.0 to 1.0. This is important if
the output can swing in both positive and negative values. The tanh function is
more popularly used in the internal layer of recurrent neural networks but has
also been used as output layer activation. If tanh is used to replace sigmoid in the
output activation, the data used must be scaled appropriately. For example, instead
of scaling each grayscale pixel in the range [0.0 1.0] using

255
xx = , it is assigned

in the range [-1.0 1.0] by 127.5
127.5
xx −

= .

The following graph shows the sigmoid and tanh functions. Mathematically,
sigmoid can be expressed in equation as follows:

() () 1
1 xsigmoid x x
e

σ −= =
+

 (Equation 1.3.6)

Figure 1.3.6: Plots of sigmoid and tanh

Chapter 1

[17]

How far the predicted tensor is from the one-hot ground truth vector is called loss.
One type of loss function is mean_squared_error (mse), or the average of the
squares of the differences between target and prediction. In the current example, we
are using categorical_crossentropy. It's the negative of the sum of the product
of the target and the logarithm of the prediction. There are other loss functions that
are available in Keras, such as mean_absolute_error, and binary_crossentropy.
The choice of the loss function is not arbitrary but should be a criterion that the
model is learning. For classification by category, categorical_crossentropy
or mean_squared_error is a good choice after the softmax activation layer. The
binary_crossentropy loss function is normally used after the sigmoid activation
layer while mean_squared_error is an option for tanh output.

Optimization
With optimization, the objective is to minimize the loss function. The idea is that
if the loss is reduced to an acceptable level, the model has indirectly learned the
function mapping input to output. Performance metrics are used to determine if
a model has learned the underlying data distribution. The default metric in Keras
is loss. During training, validation, and testing, other metrics such as accuracy
can also be included. Accuracy is the percent, or fraction, of correct predictions
based on ground truth. In deep learning, there are many other performance
metrics. However, it depends on the target application of the model. In literature,
performance metrics of the trained model on the test dataset is reported for
comparison to other deep learning models.

In Keras, there are several choices for optimizers. The most commonly used
optimizers are; Stochastic Gradient Descent (SGD), Adaptive Moments (Adam),
and Root Mean Squared Propagation (RMSprop). Each optimizer features tunable
parameters like learning rate, momentum, and decay. Adam and RMSprop are
variations of SGD with adaptive learning rates. In the proposed classifier network,
Adam is used since it has the highest test accuracy.

SGD is considered the most fundamental optimizer. It's a simpler version of the
gradient descent in calculus. In gradient descent (GD), tracing the curve of a
function downhill finds the minimum value, much like walking downhill in
a valley or opposite the gradient until the bottom is reached.

The GD algorithm is illustrated in Figure 1.3.7. Let's suppose x is the parameter
(for example, weight) being tuned to find the minimum value of y (for example, loss
function). Starting at an arbitrary point of x = -0.5 with the gradient being 2.0dy

dx
= − .

The GD algorithm imposes that x is then updated to ()0.5 2.0x ∈= − − − .
The new value of x is equal to the old value, plus the opposite of the gradient scaled
by ∈. The small number ∈ refers to the learning rate. If ∈= 0.01, then the new value
of x = -0.48.

Introducing Advanced Deep Learning with Keras

[18]

GD is performed iteratively. At each step, y will get closer to its minimum value.

At x = 0.5 0.0dy
dx

= , the GD has found the absolute minimum value of y = -1.25.
The gradient recommends no further change in x.

The choice of learning rate is crucial. A large value of ∈ may not find the minimum
value since the search will just swing back and forth around the minimum value.
On the other hand, too small value of ∈ may take a significant number of iterations
before the minimum is found. In the case of multiple minima, the search might get
stuck in a local minimum.

Figure 1.3.7: Gradient descent is similar to walking downhill on the function curve until
the lowest point is reached. In this plot, the global minimum is at x = 0.5.

An example of multiple minima can be seen in Figure 1.3.8. If for some reason the
search started at the left side of the plot and the learning rate is very small, there
is a high probability that GD will find x = -1.51 as the minimum value of y. GD
will not find the global minimum at x = 1.66. A sufficiently valued learning rate
will enable the gradient descent to overcome the hill at x = 0.0. In deep learning
practice, it is normally recommended to start at a bigger learning rate (for example.
0.1 to 0.001) and gradually decrease as the loss gets closer to the minimum.

Chapter 1

[19]

Figure 1.3.8: Plot of a function with 2 minima, x = -1.51 and x = 1.66.
Also shown is the derivative of the function.

Gradient descent is not typically used in deep neural networks since you'll often
come upon millions of parameters that need to be trained. It is computationally
inefficient to perform a full gradient descent. Instead, SGD is used. In SGD, a mini
batch of samples is chosen to compute an approximate value of the descent. The
parameters (for example, weights and biases) are adjusted by the following equation:

∈← − gθ θ (Equation 1.3.7)

In this equation, θ and
1= L
m θ∇ ∑g are the parameters and gradients tensor of the loss

function respectively. The g is computed from partial derivatives of the loss function.
The mini-batch size is recommended to be a power of 2 for GPU optimization
purposes. In the proposed network, batch_size=128.

Equation 1.3.7 computes the last layer parameter updates. So, how do we adjust the
parameters of the preceding layers? For this case, the chain rule of differentiation is
applied to propagate the derivatives to the lower layers and compute the gradients
accordingly. This algorithm is known as backpropagation in deep learning. The
details of backpropagation are beyond the scope of this book. However, a good
online reference can be found at http://neuralnetworksanddeeplearning.com.

http://neuralnetworksanddeeplearning.com

Introducing Advanced Deep Learning with Keras

[20]

Since optimization is based on differentiation, it follows that an important criterion
of the loss function is that it must be smooth or differentiable. This is an important
constraint to keep in mind when introducing a new loss function.

Given the training dataset, the choice of the loss function, the optimizer, and the
regularizer, the model can now be trained by calling the fit() function:

loss function for one-hot vector
use of adam optimizer
accuracy is a good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

This is another helpful feature of Keras. By just supplying both the x and y data,
the number of epochs to train, and the batch size, fit() does the rest. In other deep
learning frameworks, this translates to multiple tasks such as preparing the input
and output data in the proper format, loading, monitoring, and so on. While all of
these must be done inside a for loop! In Keras, everything is done in just one line.

In the fit() function, an epoch is the complete sampling of the entire training data.
The batch_size parameter is the sample size of the number of inputs to process at
each training step. To complete one epoch, fit() requires the size of train dataset
divided by batch size, plus 1 to compensate for any fractional part.

Performance evaluation
At this point, the model for the MNIST digit classifier is now complete. Performance
evaluation will be the next crucial step to determine if the proposed model has come
up with a satisfactory solution. Training the model for 20 epochs will be sufficient to
obtain comparable performance metrics.

The following table, Table 1.3.2, shows the different network configurations and
corresponding performance measures. Under Layers, the number of units is shown
for layers 1 to 3. For each optimizer, the default parameters in Keras are used. The
effects of varying the regularizer, optimizer and number of units per layer can be
observed. Another important observation in Table 1.3.2 is that bigger networks do
not necessarily translate to better performance.

Increasing the depth of this network shows no added benefits in terms of accuracy for
both training and testing datasets. On the other hand, a smaller number of units, like
128, could also lower both the test and train accuracy. The best train accuracy at 99.93%
is obtained when the regularizer is removed, and 256 units per layer are used. The test
accuracy, however, is much lower at 98.0%, as a result of the network overfitting.

Chapter 1

[21]

The highest test accuracy is with the Adam optimizer and Dropout(0.45) at 98.5%.
Technically, there is still some degree of overfitting given that its training accuracy
is 99.39%. Both the train and test accuracy are the same at 98.2% for 256-512-256,
Dropout(0.45) and SGD. Removing both the Regularizer and ReLU layers results
in it having the worst performance. Generally, we'll find that the Dropout layer
has better performance than l2.

Following table demonstrates a typical deep neural network performance
during tuning. The example indicates that there is a need to improve the network
architecture. In the following section, another model using CNNs shows a significant
improvement in test accuracy:

Layers Regularizer Optimizer ReLU Train
Accuracy, %

Test
Accuracy, %

256-256-256 None SGD None 93.65 92.5
256-256-256 L2(0.001) SGD Yes 99.35 98.0
256-256-256 L2(0.01) SGD Yes 96.90 96.7
256-256-256 None SGD Yes 99.93 98.0
256-256-256 Dropout(0.4) SGD Yes 98.23 98.1
256-256-256 Dropout(0.45) SGD Yes 98.07 98.1
256-256-256 Dropout(0.5) SGD Yes 97.68 98.1
256-256-256 Dropout(0.6) SGD Yes 97.11 97.9
256-512-256 Dropout(0.45) SGD Yes 98.21 98.2
512-512-512 Dropout(0.2) SGD Yes 99.45 98.3
512-512-512 Dropout(0.4) SGD Yes 98.95 98.3
512-1024-512 Dropout(0.45) SGD Yes 98.90 98.2
1024-1024-1024 Dropout(0.4) SGD Yes 99.37 98.3
256-256-256 Dropout(0.6) Adam Yes 98.64 98.2
256-256-256 Dropout(0.55) Adam Yes 99.02 98.3
256-256-256 Dropout(0.45) Adam Yes 99.39 98.5
256-256-256 Dropout(0.45) RMSprop Yes 98.75 98.1
128-128-128 Dropout(0.45) Adam Yes 98.70 97.7

Table 1.3.2: Different MLP network configurations and performance measures

Model summary
Using the Keras library provides us with a quick mechanism to double check the
model description by calling:

model.summary()

Introducing Advanced Deep Learning with Keras

[22]

Listing 1.3.2 shows the model summary of the proposed network. It requires
a total of 269,322 parameters. This is substantial considering that we have a simple
task of classifying MNIST digits. MLPs are not parameter efficient. The number of
parameters can be computed from Figure 1.3.4 by focusing on how the output of the
perceptron is computed. From input to Dense layer: 784 × 256 + 256 = 200,960. From
first Dense to second Dense: 256 × 256 + 256 = 65,792. From second Dense to the
output layer: 10 × 256 + 10 = 2,570. The total is 269,322.

Listing 1.3.2 shows a summary of an MLP MNIST digit classifier model:

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 256) 200960

activation_1 (Activation) (None, 256) 0

dropout_1 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 256) 65792

activation_2 (Activation) (None, 256) 0

dropout_2 (Dropout) (None, 256) 0

dense_3 (Dense) (None, 10) 2570

activation_3 (Activation) (None, 10) 0

===

Total params: 269,322

Trainable params: 269,322

Non-trainable params: 0

Another way of verifying the network is by calling:

plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

Figure 1.3.9 shows the plot. You'll find that this is similar to the results of summary()
but graphically shows the interconnection and I/O of each layer.

Chapter 1

[23]

Figure 1.3.9: The graphical description of the MLP MNIST digit classifier

Convolutional neural networks (CNNs)
We're now going to move onto the second artificial neural network, Convolutional
Neural Networks (CNNs). In this section, we're going solve the same MNIST digit
classification problem, instead this time using CNNs.

Introducing Advanced Deep Learning with Keras

[24]

Figure 1.4.1 shows the CNN model that we'll use for the MNIST digit classification,
while its implementation is illustrated in Listing 1.4.1. Some changes in the previous
model will be needed to implement the CNN model. Instead of having input vector,
the input tensor now has new dimensions (height, width, channels) or (image_size,
image_size, 1) = (28, 28, 1) for the grayscale MNIST images. Resizing the train and
test images will be needed to conform to this input shape requirement.

Figure 1.4.1: CNN model for MNIST digit classification

Listing 1.4.1, cnn-mnist-1.4.1.py shows the Keras code for the MNIST digit
classification using CNN:

import numpy as np
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

input image dimensions
image_size = x_train.shape[1]
resize and normalize
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters

Chapter 1

[25]

image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2

model is a stack of CNN-ReLU-MaxPooling
model = Sequential()
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 input_shape=input_shape))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu'))
model.add(Flatten())
dropout added as regularizer
model.add(Dropout(dropout))
output layer is 10-dim one-hot vector
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='cnn-mnist.png', show_shapes=True)

loss function for one-hot vector
use of adam optimizer
accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=10, batch_size=batch_size)

loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

The major change here is the use of Conv2D layers. The relu activation function
is already an argument of Conv2D. The relu function can be brought out as an
Activation layer when the batch normalization layer is included in the model.
Batch normalization is used in deep CNNs so that large learning rates can be
used without causing instability during training.

Introducing Advanced Deep Learning with Keras

[26]

Convolution
If in the MLP model the number of units characterizes the Dense layers, the kernel
characterizes the CNN operations. As shown in Figure 1.4.2, the kernel can be
visualized as a rectangular patch or window that slides through the whole image
from left to right, and top to bottom. This operation is called convolution. It
transforms the input image into a feature maps, which is a representation of what
the kernel has learned from the input image. The feature maps are then transformed
into another feature maps in the succeeding layer and so on. The number of feature
maps generated per Conv2D is controlled by the filters argument.

Figure 1.4.2: A 3 × 3 kernel is convolved with an MNIST digit image.
The convolution is shown in steps tn and tn+1 where the kernel moved by a stride of 1 pixel to the right.

Chapter 1

[27]

The computation involved in the convolution is shown in Figure 1.4.3. For
simplicity, a 5 × 5 input image (or input feature map) where a 3 × 3 kernel is applied
is illustrated. The resulting feature map is shown after the convolution. The value
of one element of the feature map is shaded. You'll notice that the resulting feature
map is smaller than the original input image, this is because the convolution is only
performed on valid elements. The kernel cannot go beyond the borders of the image.
If the dimensions of the input should be the same as the output feature maps, Conv2D
will accept the option padding='same'. The input is padded with zeroes around its
borders to keep the dimensions unchanged after the convolution:

Figure 1.4.3: The convolution operation shows how one element of the feature map is computed

Pooling operations
The last change is the addition of a MaxPooling2D layer with the argument
pool_size=2. MaxPooling2D compresses each feature map. Every patch of
size pool_size × pool_size is reduced to one pixel. The value is equal to the
maximum pixel value within the patch. MaxPooling2D is shown in the following
figure for two patches:

Figure 1.4.4: MaxPooling2D operation. For simplicity,
the input feature map is 4 × 4 resulting in a 2 × 2 feature map.

Introducing Advanced Deep Learning with Keras

[28]

The significance of MaxPooling2D is the reduction in feature maps size which
translates to increased kernel coverage. For example, after MaxPooling2D(2),
the 2 × 2 kernel is now approximately convolving with a 4 × 4 patch. The CNN
has learned a new set of feature maps for a different coverage.

There are other means of pooling and compression. For example, to achieve
a 50% size reduction as MaxPooling2D(2), AveragePooling2D(2) takes the
average of a patch instead of finding the maximum. Strided convolution,
Conv2D(strides=2,…) will skip every two pixels during convolution and
will still have the same 50% size reduction effect. There are subtle differences
in the effectiveness of each reduction technique.

In Conv2D and MaxPooling2D, both pool_size and kernel can be non-square. In
these cases, both the row and column sizes must be indicated. For example, pool_
size=(1, 2) and kernel=(3, 5).

The output of the last MaxPooling2D is a stack of feature maps. The role of Flatten
is to convert the stack of feature maps into a vector format that is suitable for either
Dropout or Dense layers, similar to the MLP model output layer.

Performance evaluation and model summary
As shown in Listing 1.4.2, the CNN model in Listing 1.4.1 requires a smaller number
of parameters at 80,226 compared to 269,322 when MLP layers are used. The
conv2d_1 layer has 640 parameters because each kernel has 3 × 3 = 9 parameters,
and each of the 64 feature maps has one kernel and one bias parameter. The number
of parameters for other convolution layers can be computed in a similar way. Figure
1.4.5 shows the graphical representation of the CNN MNIST digit classifier.

Table 1.4.1 shows that the maximum test accuracy of 99.4% which can be achieved
for a 3–layer network with 64 feature maps per layer using the Adam optimizer with
dropout=0.2. CNNs are more parameter efficient and have a higher accuracy than
MLPs. Likewise, CNNs are also suitable for learning representations from sequential
data, images, and videos.

Chapter 1

[29]

Listing 1.4.2 shows a summary of a CNN MNIST digit classifier:

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 26, 26, 64) 640

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64) 0

conv2d_2 (Conv2D) (None, 11, 11, 64) 36928

max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

flatten_1 (Flatten) (None, 576) 0

dropout_1 (Dropout) (None, 576) 0

dense_1 (Dense) (None, 10) 5770

activation_1 (Activation) (None, 10) 0

===

Total params: 80,266

Trainable params: 80,266

Non-trainable params: 0

Introducing Advanced Deep Learning with Keras

[30]

Figure 1.4.5: Graphical description of the CNN MNIST digit classifier

Layers Optimizer Regularizer Train Accuracy, % Test Accuracy, %
64-64-64 SGD Dropout(0.2) 97.76 98.50

Chapter 1

[31]

64-64-64 RMSprop Dropout(0.2) 99.11 99.00
64-64-64 Adam Dropout(0.2) 99.75 99.40
64-64-64 Adam Dropout(0.4) 99.64 99.30

Table 1.4.1: Different CNN network configurations and performance
measures for the MNIST digit classification

Recurrent neural networks (RNNs)
We're now going to look at the last of our three artificial neural networks,
Recurrent neural networks, or RNNs.

RNNs are a family of networks that are suitable for learning representations of
sequential data like text in Natural Language Processing (NLP) or stream of sensor
data in instrumentation. While each MNIST data sample is not sequential in nature,
it is not hard to imagine that every image can be interpreted as a sequence of rows
or columns of pixels. Thus, a model based on RNNs can process each MNIST image
as a sequence of 28-element input vectors with timesteps equal to 28. The following
listing shows the code for the RNN model in Figure 1.5.1:

Figure 1.5.1: RNN model for MNIST digit classification

In the following listing, Listing 1.5.1, the rnn-mnist-1.5.1.py shows the Keras code
for MNIST digit classification using RNNs:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, SimpleRNN
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

Introducing Advanced Deep Learning with Keras

[32]

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

resize and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2

model is RNN with 256 units, input is 28-dim vector 28 timesteps
model = Sequential()
model.add(SimpleRNN(units=units,
 dropout=dropout,
 input_shape=input_shape))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)

loss function for one-hot vector
use of sgd optimizer
accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Chapter 1

[33]

There are the two main differences between RNNs and the two previous models.
First is the input_shape = (image_size, image_size) which is actually input_
shape = (timesteps, input_dim) or a sequence of input_dim—dimension
vectors of timesteps length. Second is the use of a SimpleRNN layer to represent
an RNN cell with units=256. The units variable represents the number of output
units. If the CNN is characterized by the convolution of kernel across the input
feature map, the RNN output is a function not only of the present input but also
of the previous output or hidden state. Since the previous output is also a function
of the previous input, the current output is also a function of the previous output
and input and so on. The SimpleRNN layer in Keras is a simplified version of the
true RNN. The following, equation describes the output of SimpleRNN:

ht = tanh(b + Wht-1 + Uxt) (1.5.1)

In this equation, b is the bias, while W and U are called recurrent kernel
(weights for previous output) and kernel (weights for the current input) respectively.
Subscript t is used to indicate the position in the sequence. For SimpleRNN layer with
units=256, the total number of parameters is 256 + 256 × 256 + 256 × 28 = 72,960
corresponding to b, W, and U contributions.

Following figure shows the diagrams of both SimpleRNN and RNN that were used
in the MNIST digit classification. What makes SimpleRNN simpler than RNN is the
absence of the output values Ot = Vht + c before the softmax is computed:

Figure 1.5.2: Diagram of SimpleRNN and RNN

RNNs might be initially harder to understand when compared to MLPs or CNNs. In
MLPs, the perceptron is the fundamental unit. Once the concept of the perceptron is
understood, MLPs are just a network of perceptrons. In CNNs, the kernel is a patch
or window that slides through the feature map to generate another feature map. In
RNNs, the most important is the concept of self-loop. There is in fact just one cell.

Introducing Advanced Deep Learning with Keras

[34]

The illusion of multiple cells appears because a cell exists per timestep but in fact, it
is just the same cell reused repeatedly unless the network is unrolled. The underlying
neural networks of RNNs are shared across cells.

The summary in Listing 1.5.2 indicates that using a SimpleRNN requires a fewer
number of parameters. Figure 1.5.3 shows the graphical description of the RNN
MNIST digit classifier. The model is very concise. Table 1.5.1 shows that the
SimpleRNN has the lowest accuracy among the networks presented.

Listing 1.5.2, RNN MNIST digit classifier summary:

Layer (type) Output Shape Param #

===

simple_rnn_1 (SimpleRNN) (None, 256) 72960

dense_1 (Dense) (None, 10) 2570

activation_1 (Activation) (None, 10) 0

===

Total params: 75,530

Trainable params: 75,530

Non-trainable params: 0

Figure 1.5.3: The RNN MNIST digit classifier graphical description

Chapter 1

[35]

Layers Optimizer Regularizer Train Accuracy, % Test Accuracy, %
256 SGD Dropout(0.2) 97.26 98.00
256 RMSprop Dropout(0.2) 96.72 97.60
256 Adam Dropout(0.2) 96.79 97.40
512 SGD Dropout(0.2) 97.88 98.30

Table 1.5.1: The different SimpleRNN network configurations and performance measures

In many deep neural networks, other members of the RNN family are more
commonly used. For example, Long Short-Term Memory (LSTM) networks have
been used in both machine translation and question answering problems. LSTM
networks address the problem of long-term dependency or remembering relevant
past information to the present output.

Unlike RNNs or SimpleRNN, the internal structure of the LSTM cell is more
complex. Figure 1.5.4 shows a diagram of LSTM in the context of MNIST digit
classification. LSTM uses not only the present input and past outputs or hidden
states; it introduces a cell state, st, that carries information from one cell to the
other. Information flow between cell states is controlled by three gates, ft, it and
qt. The three gates have the effect of determining which information should be
retained or replaced and the amount of information in the past and current input
that should contribute to the current cell state or output. We will not discuss the
details of the internal structure of the LSTM cell in this book. However, an intuitive
guide to LSTM can be found at: http://colah.github.io/posts/2015-08-
Understanding-LSTMs.

The LSTM() layer can be used as a drop-in replacement to SimpleRNN(). If LSTM
is overkill for the task at hand, a simpler version called Gated Recurrent Unit
(GRU) can be used. GRU simplifies LSTM by combining the cell state and hidden
state together. GRU also reduces the number of gates by one. The GRU() function
can also be used as a drop-in replacement for SimpleRNN().

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

Introducing Advanced Deep Learning with Keras

[36]

Figure 1.5.4: Diagram of LSTM. The parameters are not shown for clarity

There are many other ways to configure RNNs. One way is making an RNN
model that is bidirectional. By default, RNNs are unidirectional in the sense that
the current output is only influenced by the past states and the current input.
In bidirectional RNNs, future states can also influence the present state and the
past states by allowing information to flow backward. Past outputs are updated
as needed depending on the new information received. RNNs can be made
bidirectional by calling a wrapper function. For example, the implementation
of bidirectional LSTM is Bidirectional(LSTM()).

For all types of RNNs, increasing the units will also increase the capacity. However,
another way of increasing the capacity is by stacking the RNN layers. You should
note though that as a general rule of thumb, the capacity of the model should only
be increased if needed. Excess capacity may contribute to overfitting, and as a result,
both longer training time and slower performance during prediction.

Chapter 1

[37]

Conclusion
This chapter provided an overview of the three deep learning models – MLPs,
RNNs, CNNs – and also introduced Keras, a library for the rapid development,
training and testing those deep learning models. The sequential API of Keras
was also discussed. In the next chapter, the Functional API will be presented,
which will enable us to build more complex models specifically for advanced
deep neural networks.

This chapter also reviewed the important concepts of deep learning such
as optimization, regularization, and loss function. For ease of understanding,
these concepts were presented in the context of the MNIST digit classification.
Different solutions to the MNIST digit classification using artificial neural networks,
specifically MLPs, CNNs, and RNNs, which are important building blocks of deep
neural networks, were also discussed together with their performance measures.

With the understanding of deep learning concepts, and how Keras can be used
as a tool with them, we are now equipped to analyze advanced deep learning
models. After discussing Functional API in the next chapter, we'll move onto
the implementation of popular deep learning models. Subsequent chapters will
discuss advanced topics such as autoencoders, GANs, VAEs, and reinforcement
learning. The accompanying Keras code implementations will play an important
role in understanding these topics.

References
1.	 LeCun, Yann, Corinna Cortes, and C. J. Burges. MNIST handwritten digit

database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist
2 (2010).

[39]

Deep Neural Networks
In this chapter, we'll be examining deep neural networks. These networks have
shown excellent performance in terms of the accuracy of their classification on
more challenging and advanced datasets like ImageNet, CIFAR10 (https://www.
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf), and CIFAR100. For
conciseness, we'll only be focusing on two networks, ResNet [2][4] and DenseNet
[5]. While we will go into much more detail, it's important to take a minute to
introduce these networks.

ResNet introduced the concept of residual learning which enabled it to build
very deep networks by addressing the vanishing gradient problem in deep
convolutional networks.

DenseNet improved the ResNet technique further by allowing every convolution
to have direct access to inputs, and lower layer feature maps. It's also managed
to keep the number of parameters low in deep networks by utilizing both the
Bottleneck and Transition layers.

But why these two models, and not others? Well, since their introduction, there
have been countless models such as ResNeXt [6] and FractalNet [7] which have
been inspired by the technique used by these two networks. Likewise, with an
understanding of both ResNet and DenseNet, we'll be able to use their design
guidelines to build our own models. By using transfer learning, this will also
allow us to take advantage of pretrained ResNet and DenseNet models for our
own purposes. These reasons alone, along with their compatibility with Keras,
make the two models ideal for exploring and complimenting the advanced deep
learning scope of this book.

Deep Neural Networks

[40]

While this chapter's focus is on deep neural networks; we'll begin this chapter by
discussing an important feature of Keras called the Functional API. This API acts
as an alternative method for building networks in Keras and enables us to build
more complex networks that cannot be accomplished by the sequential model. The
reason why we're focusing so much on this API is that it will become a very useful
tool for building deep networks such as the two we're focusing on in this chapter.
It's recommended that you've completed, Chapter 1, Introducing Advanced Deep
Learning with Keras, before moving onto this chapter as we'll refer to introductory
level code and concepts explored in that chapter as we take them to an advanced
level in this chapter.

The goals of this chapter is to introduce:

•	 The Functional API in Keras, as well as exploring examples of networks
running it

•	 Deep Residual Networks (ResNet versions 1 and 2) implementation in Keras
•	 The implementation of Densely Connected Convolutional Networks

(DenseNet) into Keras
•	 Explore two popular deep learning models, ResNet, and DenseNet

Functional API
In the sequential model that we first introduced in Chapter 1, Introducing Advanced
Deep Learning with Keras, a layer is stacked on top of another layer. Generally, the
model will be accessed through its input and output layers. We also learned that
there is no simple mechanism if we find ourselves wanting to add an auxiliary
input at the middle of the network, or even to extract an auxiliary output before
the last layer.

That model also had its downside, for example, it doesn't support graph-like models
or models that behave like Python functions. In addition, it's also difficult to share
layers between the two models. Such limitations are addressed by the functional
API and are the reason why it's a vital tool for anyone wanting to work with deep
learning models.

Chapter 2

[41]

The Functional API is guided by the following two concepts:

•	 A layer is an instance that accepts a tensor as an argument. The output of
a layer is another tensor. To build a model, the layer instances are objects that
are chained to one another through both input and output tensors. This will
have similar end-result as would stacking multiple layers in the sequential
model have. However, using layer instances makes it easier for models to
have either auxiliary or multiple inputs and outputs since the input/output
of each layer will be readily accessible.

•	 A model is a function between one or more input tensors and output tensors.
In between the model input and output, tensors are the layer instances that
are chained to one another by layer input and output tensors. A model is,
therefore, a function of one or more input layers and one or more output
layers. The model instance formalizes the computational graph on how
the data flows from input(s) to output(s).

After you've completed building the functional API model, the training and
evaluation are then performed by the same functions used in the sequential
model. To illustrate, in a functional API, a 2D convolutional layer, Conv2D, with
32 filters and with x as the layer input tensor and y as the layer output tensor can
be written as:

y = Conv2D(32)(x)

We're also able to stack multiple layers to build our models. For example, we can
rewrite the CNN on MNIST code, the same code we created in the last chapter,
as shown in following listing:

You'll find Listing 2.1.1, cnn-functional-2.1.1.py, as follows. This shows us
how we can convert the cnn-mnist-1.4.1.py code using the functional API:

import numpy as np
from keras.layers import Dense, Dropout, Input
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.models import Model
from keras.datasets import mnist
from keras.utils import to_categorical

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

Deep Neural Networks

[42]

reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 64
dropout = 0.3

use functional API to build cnn layers
inputs = Input(shape=input_shape)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(inputs)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(y)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(y)
image to vector before connecting to dense layer
y = Flatten()(y)
dropout regularization
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

build the model by supplying inputs/outputs
model = Model(inputs=inputs, outputs=outputs)
network model in text
model.summary()

classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',

Chapter 2

[43]

 optimizer='adam',
 metrics=['accuracy'])

train the model with input images and labels
model.fit(x_train,
 y_train,
 validation_data=(x_test, y_test),
 epochs=20,
 batch_size=batch_size)

model accuracy on test dataset
score = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

By default, MaxPooling2D uses pool_size=2, so the argument has been removed.

In the preceding listing every layer is a function of a tensor. They each generate
a tensor as an output which becomes the input to the next layer. To create this
model, we can call Model() and supply both the inputs and outputs tensors,
or alternatively the lists of tensors. Everything else remains the same.

The same listing can also be trained and evaluated using the fit() and evaluate()
functions, similar to the sequential model. The sequential class is, in fact, a subclass
of the Model class. We need to remember that we inserted the validation_data
argument in the fit() function to see the progress of validation accuracy during
training. The accuracy ranges from 99.3% to 99.4% in 20 epochs.

Creating a two-input and one-output model
We're now going to do something really exciting, creating an advanced model
with two inputs and one output. Before we start, it's important to know that this
is something that is not straightforward in the sequential model.

Let's suppose a new model for the MNIST digit classification is invented, and it's
called the Y-Network, as shown in Figure 2.1.1. The Y-Network uses the same input
twice, both on the left and right CNN branches. The network combines the results
using concatenate layer. The merge operation concatenate is similar to stacking
two tensors of the same shape along the concatenation axis to form one tensor. For
example, concatenating two tensors of shape (3, 3, 16) along the last axis will result
in a tensor of shape (3, 3, 32).

Deep Neural Networks

[44]

Everything else after the concatenate layer will remain the same as the previous
CNN model. That is Flatten-Dropout-Dense:

Figure 2.1.1: The Y-Network accepts the same input twice but processes the input in two branches
of convolutional networks. The outputs of the branches are combined using the concatenate layer.

The last layer prediction is going to be similar to the previous CNN example.

To improve the performance of the model in Listing 2.1.1, we can propose several
changes. Firstly, the branches of the Y-Network are doubling the number of filters
to compensate for the halving of the feature maps size after MaxPooling2D(). For
example, if the output of the first convolution is (28, 28, 32), after max pooling
the new shape is (14, 14, 32). The next convolution will have a filter size of 64
and output dimensions of (14, 14, 64).

Chapter 2

[45]

Second, although both branches have the same kernel size of 3, the right branch
use a dilation rate of 2. Figure 2.1.2 shows the effect of different dilation rates on a
kernel with size 3. The idea is that by increasing the coverage of the kernel using
dilation rate, the CNN will enable the right branch to learn different feature maps.
We'll use the option padding='same' to ensure that we will not have negative tensor
dimensions when the dilated CNN is used. By using padding='same', we'll keep the
dimensions of the input the same as the output feature maps. This is accomplished
by padding the input with zeros to make sure that the output has the same size:

Figure 2.1.2: By increasing the dilate rate from 1, the effective kernel coverage also increases

Following listing shows the implementation of Y-Network. The two branches
are created by the two for loops. Both branches expect the same input shape. The
two for loops will create two 3-layer stacks of Conv2D-Dropout-MaxPooling2D.
While we used the concatenate layer to combine the outputs of the left and right
branches, we could also utilize the other merge functions of Keras, such as add,
dot, multiply. The choice of the merge function is not purely arbitrary but must
be based on a sound model design decision.

In the Y-Network, concatenate will not discard any portion of the feature maps.
Instead, we'll let the Dense layer figure out what to do with the concatenated
feature maps. Listing 2.1.2, cnn-y-network-2.1.2.py shows the Y-Network
implementation using the Functional API:

import numpy as np

from keras.layers import Dense, Dropout, Input
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.models import Model
from keras.layers.merge import concatenate
from keras.datasets import mnist
from keras.utils import to_categorical

Deep Neural Networks

[46]

from keras.utils import plot_model

load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

 # compute the number of labels
 num_labels = len(np.unique(y_train))

 # convert to one-hot vector
 y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
dropout = 0.4
n_filters = 32

left branch of Y network
left_inputs = Input(shape=input_shape)
x = left_inputs
filters = n_filters
3 layers of Conv2D-Dropout-MaxPooling2D
number of filters doubles after each layer (32-64-128)
for i in range(3):
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(x)
 x = Dropout(dropout)(x)
 x = MaxPooling2D()(x)
 filters *= 2

right branch of Y network
right_inputs = Input(shape=input_shape)
y = right_inputs
filters = n_filters
3 layers of Conv2D-Dropout-MaxPooling2D
number of filters doubles after each layer (32-64-128)
for i in range(3):
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,

Chapter 2

[47]

 padding='same',
 activation='relu',
 dilation_rate=2)(y)
 y = Dropout(dropout)(y)
 y = MaxPooling2D()(y)
 filters *= 2

merge left and right branches outputs
y = concatenate([x, y])
feature maps to vector before connecting to Dense layer
y = Flatten()(y)
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

build the model in functional API
model = Model([left_inputs, right_inputs], outputs)
verify the model using graph
plot_model(model, to_file='cnn-y-network.png', show_shapes=True)
verify the model using layer text description
model.summary()

classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

train the model with input images and labels
model.fit([x_train, x_train],
 y_train,
 validation_data=([x_test, x_test], y_test),
 epochs=20,
 batch_size=batch_size)

model accuracy on test dataset
score = model.evaluate([x_test, x_test], y_test, batch_size=batch_
size)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

Taking a step back, we can note that the Y-Network is expecting two inputs for
training and validation. The inputs are identical, so [x_train, x_train] is
supplied.

Over the course of the 20 epochs, the accuracy of the Y-Network ranges from 99.4%
to 99.5%. This is a slight improvement over the 3-stack CNN which achieved a range
between 99.3% and 99.4% accuracy range. However, this was at the cost of both
higher complexity and more than double the number of parameters. The following
figure, Figure 2.1.3, shows the architecture of the Y-Network as understood by Keras
and generated by the plot_model() function:

Deep Neural Networks

[48]

Figure 2.1.3: The CNN Y-Network as implemented in Listing 2.1.2

Chapter 2

[49]

This concludes our look at the Functional API. We should take this time to remember
that the focus of this chapter is building deep neural networks, specifically ResNet
and DenseNet. Therefore, we're only covering the Functional API materials needed
to build them, as to cover the entire API would be beyond the scope of this book.

The reader is referred to visit https://keras.io/ for additional
information on functional API.

Deep residual networks (ResNet)
One key advantage of deep networks is that they have a great ability to learn
different levels of representations from both inputs and feature maps. In both
classification, segmentation, detection and a number of other computer vision
problems, learning different levels of features generally leads to better performance.

However, you'll find that it's not easy to train deep networks as a result of
the gradient vanishes (or explodes) with depth in the shallow layers during
backpropagation. Figure 2.2.1 illustrates the problem of vanishing gradient. The
network parameters are updated by backpropagation from the output layer
to all previous layers. Since backpropagation is based on the chain rule, there is
a tendency for gradients to diminish as they reach the shallow layers. This is due
to the multiplication of small numbers, especially for the small absolute value of
errors and parameters.

The number of multiplication operations will be proportional to the depth of the
network. It's also worth noting that if the gradient degrades, the parameters will not
be updated appropriately.

https://keras.io/

Deep Neural Networks

[50]

Hence, the network will fail to improve its performance:

Figure 2.2.1: A common problem in deep networks is that the gradient
vanishes as it reaches the shallow layers during backpropagation.

Chapter 2

[51]

Figure 2.2.2: A comparison between a block in a typical CNN and a block in ResNet.
To prevent degradation in gradients during backpropagation, a shortcut connection is introduced.

To alleviate the degradation of the gradient in deep networks, ResNet introduced
the concept of a deep residual learning framework. Let's analyze a block, a small
segment of our deep network.

The preceding figure shows a comparison between a typical CNN block and
a ResNet residual block. The idea of ResNet is that in order to prevent the gradient
from degrading, we'll let the information flow through the shortcut connections
to reach the shallow layers.

Next, we're going to look at more details within the discussion of the differences
between the two blocks. Figure 2.2.3 shows more details of the CNN block of another
commonly used deep network, VGG[3], and ResNet. We'll represent the layer feature
maps as x. The feature maps at layer l are lx . The operations in the CNN layer are
Conv2D-Batch Normalization (BN)-ReLU.

Let's suppose we represent this set of operations in the form of H() = Conv2D-Batch
Normalization(BN)-ReLU, that will then mean that:

()1 -2x l lH x− = (Equation 2.2.1)

()-1l lHx x= (Equation 2.2.2)

In other words, the feature maps at layer l - 2 are transformed to 1l−x by H() =
Conv2D-Batch Normalization(BN)-ReLU. The same set of operations is applied
to transform 1l−x to lx . To put this another way, if we have an 18-layer VGG, then
there are 18 H() operations before the input image is transformed to the 18th layer
feature maps.

Deep Neural Networks

[52]

Generally speaking, we can observe that the layer l output feature maps are directly
affected by the previous feature maps only. Meanwhile, for ResNet:

()-1 -2l lHx x= (Equation 2.2.3)

()()-1 -2l l lReLU Fx x x= + (Equation 2.2.4)

Figure 2.2.3: A detailed layer operations for a plain CNN block and a Residual block

()1lF −x is made of Conv2D-BN, which is also known as the residual mapping.
The + sign is tensor element-wise addition between the shortcut connection and
the output of ()1lF −x . The shortcut connection doesn't add extra parameters nor
extra computational complexity.

Chapter 2

[53]

The add operation can be implemented in Keras by the add() merge function.
However, both the ()1lF −x equation and x should have the same dimensions.
If the dimensions are different, for example, when changing the feature maps
size, we should perform a linear projection on x as to match the size of ()1lF −x .
In the original paper, the linear projection for the case, when the feature maps
size is halved, is done by a Conv2D with a 1 × 1 kernel and strides=2.

Back in Chapter 1, Introducing Advanced Deep Learning with Keras, we discussed
that stride > 1 is equivalent to skipping pixels during convolution. For example,
if strides=2, we could skip every other pixel when we slide the kernel during the
convolution process.

The preceding Equations 2.2.3 and 2.2.4, both model ResNet residual block
operations. They imply that if the deeper layers can be trained to have fewer
errors, then there is no reason why the shallower layers should have higher errors.

Knowing the basic building blocks of ResNet, we're able to design a deep residual
network for image classification. This time, however, we're going to tackle a more
challenging and advanced dataset.

In our examples, we're going to consider CIFAR10, which was one of the datasets the
original paper was validated. In this example, Keras provides an API to conveniently
access the CIFAR10 dataset, as shown:

from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

Like MNIST, the CIFAR10 dataset has 10 categories. The dataset is a collection of
small (32 × 32) RGB real-world images of an airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and a truck corresponding to each of the 10 categories. Figure
2.2.4 shows sample images from CIFAR10.

Deep Neural Networks

[54]

In the dataset, there are 50,000 labeled train images and 10,000 labeled test images for
validation:

Figure 2.2.4: Sample images from the CIFAR10 dataset.
The full dataset has 50,000 labeled train images and 10,000 labeled test images for validation.

For the CIFAR10 data, ResNet can be built using different network architectures
as shown in Table 2.2.1. The values of both n and the corresponding architectures
of ResNet were validated in Table 2.2.2. Table 2.2.1 means we have three sets of
residual blocks. Each set has 2n layers corresponding to n residual blocks. The
extra layer in 32 × 32 is the first layer for the input image.

The kernel size is 3, except for the transition between two feature maps with different
sizes that implements a linear mapping. For example, a Conv2D with a kernel size
of 1 and strides=2. For the sake of consistency with DenseNet, we'll use the term
Transition layer when we join two residual blocks of different sizes.

ResNet uses kernel_initializer='he_normal' in order to aid the
convergence when backpropagation is taking place [1]. The last layer is made
of AveragePooling2D-Flatten-Dense. It's worth noting at this point that
ResNet does not use dropout. It also appears that the add merge operation and
the 1 × 1 convolution have a self-regularizing effect. Figure 2.2.4 shows the ResNet
model architecture for the CIFAR10 dataset as described in Table 2.2.1.

Chapter 2

[55]

The following listing shows the partial ResNet implementation within Keras. The
code has been contributed to the Keras GitHub repository. From Table 2.2.2 we can
also see that by modifying the value of n, we're able to increase the depth of the
networks. For example, for n = 18, we already have ResNet110, a deep network
with 110 layers. To build ResNet20, we use n = 3:

n = 3

model version
orig paper: version = 1 (ResNet v1),
Improved ResNet: version = 2 (ResNet v2)
version = 1

computed depth from supplied model parameter n
if version == 1:
 depth = n * 6 + 2
elif version == 2:
 depth = n * 9 + 2
…
if version == 2:
 model = resnet_v2(input_shape=input_shape, depth=depth)
else:
 model = resnet_v1(input_shape=input_shape, depth=depth)

The resnet_v1() method is a model builder for ResNet. It uses a utility function,
resnet_layer() to help build the stack of Conv2D-BN-ReLU.

It's referred to as version 1, as we will see in the next section, an improved ResNet
was proposed, and that has been called ResNet version 2, or v2. Over ResNet,
ResNet v2 has an improved residual block design resulting in better performance.

Layers Output
Size

Filter
Size

Operations

Convolution 32 × 32 16 3 3 2Conv D×

Residual Block
(1)

32 × 32 3 3 2
3 3 2

Conv D
n

Conv D
× 

× × 

Transition Layer
(1)

32 × 32 { }1 1 2 , 2Conv D strides× =
16 × 16

Residual Block
(2)

16 × 16 32 3 3 2 , 2 1 2
3 3 2

Conv D strides if st Conv D
n

Conv D
× = 

× × 

Deep Neural Networks

[56]

Transition Layer
(2)

16 × 16 { }1 1 2 , 2Conv D strides× =
8 × 8

Residual Block
(3)

8 × 8 64 3 3 2 , 2 1 2
3 3 2

Conv D strides if st Conv D
n

Conv D
× = 

× × 

Average Pooling 1 × 1 8 8 2AveragePooling D×

Table 2.2.1: ResNet network architecture configuration

Figure 2.2.4: The model architecture of ResNet for the CIFAR10 dataset classification

Layers n % Accuracy on CIFAR10
(Original paper)

% Accuracy on CIFAR10
(This book)

ResNet20 3 91.25 92.16
ResNet32 5 92.49 92.46
ResNet44 7 92.83 92.50
ResNet56 9 93.03 92.71
ResNet110 18 93.57 92.65

Table 2.2.2: ResNet architectures validated with CIFAR10

The following listing shows the partial code of resnet-cifar10-2.2.1.py,
which is the Keras model implementation of ResNet v1:

def resnet_v1(input_shape, depth, num_classes=10):

Chapter 2

[57]

 if (depth - 2) % 6 != 0:
 raise ValueError('depth should be 6n+2 (eg 20, 32,
44 in [a])')
 # Start model definition.
 num_filters = 16
 num_res_blocks = int((depth - 2) / 6)

 inputs = Input(shape=input_shape)
 x = resnet_layer(inputs=inputs)
 # Instantiate the stack of residual units
 for stack in range(3):
 for res_block in range(num_res_blocks):
 strides = 1
 if stack > 0 and res_block == 0:
 strides = 2 # downsample
 y = resnet_layer(inputs=x,
 num_filters=num_filters,
 strides=strides)
 y = resnet_layer(inputs=y,
 num_filters=num_filters,
 activation=None)
 if stack > 0 and res_block == 0
 # linear projection residual shortcut connection
 # to match changed dims
 x = resnet_layer(inputs=x,
 num_filters=num_filters,
 kernel_size=1,
 strides=strides,
 activation=None,
 batch_normalization=False)
 x = add([x, y])
 x = Activation('relu')(x)
 num_filters *= 2

 # Add classifier on top.
 # v1 does not use BN after last shortcut connection-ReLU
 x = AveragePooling2D(pool_size=8)(x)
 y = Flatten()(x)
 outputs = Dense(num_classes,
 activation='softmax',
 kernel_initializer='he_normal')(y)

 # Instantiate model.
 model = Model(inputs=inputs, outputs=outputs)
 return model

Deep Neural Networks

[58]

There are some minor differences from the original implementation of ResNet. In
particular, we don't use SGD, and instead, we'll use Adam. This is because ResNet
is easier to converge with Adam. We'll also use a learning rate (lr) scheduler, lr_
schedule(), in order to schedule the decrease in lr at 80, 120, 160, and 180 epochs
from the default 1e-3. The lr_schedule() function will be called after every epoch
during training as part of the callbacks variable.

The other callback saves the checkpoint every time there is progress made in the
validation accuracy. When training deep networks, it is a good practice to save
the model or weight checkpoint. This is because it takes a substantial amount of
time to train deep networks. When you want to use your network, all you need
to do is simply reload the checkpoint, and the trained model is restored. This can
be accomplished by calling Keras load_model(). The lr_reducer() function
is included. In case the metric has plateaued before the schedule reduction, this
callback will reduce the learning rate by the factor if the validation loss has not
improved after patience=5 epochs.

The callbacks variable is supplied when the model.fit() method is called.
Similar to the original paper, the Keras implementation uses data augmentation,
ImageDataGenerator(), in order to provide additional training data as part of
the regularization schemes. As the number of training data increases, generalization
will improve.

For example, a simple data augmentation is flipping the photo of the dog, as
shown in following figure (horizontal_flip=True). If it is an image of a dog,
then the flipped image is still an image of a dog. You can also perform other
transformation, such as scaling, rotation, whitening, and so on, and the label
will still remain the same:

Figure 2.2.5: A simple data augmentation is flipping the original image

Chapter 2

[59]

The complete code is available on GitHub: (https://github.com/PacktPublishing/
Advanced-Deep-Learning-with-Keras).

It's often difficult to exactly duplicate the implementation of the original paper,
especially in the optimizer used and data augmentation, as there are slight
differences in the performance of the Keras ResNet implementation in this
book and the model in the original paper.

ResNet v2
After the release of the second paper on ResNet [4], the original model presented
in the previous section has been known as ResNet v1. The improved ResNet is
commonly called ResNet v2. The improvement is mainly found in the arrangement
of layers in the residual block as shown in following figure.

 The prominent changes in ResNet v2 are:

•	 The use of a stack of 1 × 1 - 3 × 3 - 1 × 1 BN-ReLU-Conv2D
•	 Batch normalization and ReLU activation come before 2D convolution

Figure 2.3.1: A comparison of residual blocks between ResNet v1 and ResNet v2

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Deep Neural Networks

[60]

ResNet v2 is also implemented in the same code as resnet-cifar10-2.2.1.py:

def resnet_v2(input_shape, depth, num_classes=10):
 if (depth - 2) % 9 != 0:
 raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
 # Start model definition.
 num_filters_in = 16
 num_res_blocks = int((depth - 2) / 9)

 inputs = Input(shape=input_shape)
 # v2 performs Conv2D with BN-ReLU on input
 # before splitting into 2 paths
 x = resnet_layer(inputs=inputs,
 num_filters=num_filters_in,
 conv_first=True)

 # Instantiate the stack of residual units
 for stage in range(3):
 for res_block in range(num_res_blocks):
 activation = 'relu'
 batch_normalization = True
 strides = 1
 if stage == 0:
 num_filters_out = num_filters_in * 4
 if res_block == 0: # first layer and first stage
 activation = None
 batch_normalization = False
 else:
 num_filters_out = num_filters_in * 2
 if res_block == 0: # 1st layer but not 1st stage
 strides = 2 # downsample

 # bottleneck residual unit
 y = resnet_layer(inputs=x,
 num_filters=num_filters_in,
 kernel_size=1,
 strides=strides,
 activation=activation,
 batch_normalization=batch_normalization,
 conv_first=False)
 y = resnet_layer(inputs=y,
 num_filters=num_filters_in,
 conv_first=False)
 y = resnet_layer(inputs=y,

Chapter 2

[61]

 num_filters=num_filters_out,
 kernel_size=1,
 conv_first=False)
 if res_block == 0:
 # linear projection residual shortcut connection
 # to match changed dims
 x = resnet_layer(inputs=x,
 num_filters=num_filters_out,
 kernel_size=1,
 strides=strides,
 activation=None,
 batch_normalization=False)
 x = add([x, y])

 num_filters_in = num_filters_out

 # add classifier on top.
 # v2 has BN-ReLU before Pooling
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = AveragePooling2D(pool_size=8)(x)
 y = Flatten()(x)
 outputs = Dense(num_classes,
 activation='softmax',
 kernel_initializer='he_normal')(y)

 # instantiate model.
 model = Model(inputs=inputs, outputs=outputs)
 return model

ResNet v2's model builder is shown in the following code. For example, to build
ResNet110 v2, we'll use n = 12:

n = 12

model version
orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2
(ResNet v2)
version = 2

computed depth from supplied model parameter n
if version == 1:
 depth = n * 6 + 2
elif version == 2:
 depth = n * 9 + 2

Deep Neural Networks

[62]

…
if version == 2:
 model = resnet_v2(input_shape=input_shape, depth=depth)
else:
 model = resnet_v1(input_shape=input_shape, depth=depth)

The accuracy of ResNet v2 is shown in following table:

Layers n % Accuracy on CIFAR10
(Original paper)

% Accuracy on CIFAR10
(This book)

ResNet56 9 NA 93.01
ResNet110 18 93.63 93.15

Table 2.3.1: The ResNet v2 architectures validated on the CIFAR10 dataset

In the Keras applications package, ResNet50 has been implemented as well with
the corresponding checkpoint for reuse. This is an alternative implementation but
tied to the 50-layer ResNet v1.

Densely connected convolutional
networks (DenseNet)

Figure 2.4.1: A 4-layer Dense block in DenseNet.
The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach.
Instead of using shortcut connections, all the previous feature maps will become
the input of the next layer. The preceding figure, shows an example of a dense
interconnection in one Dense block.

Chapter 2

[63]

For simplicity, in this figure, we'll only show four layers. Notice that the input
to layer l is the concatenation of all previous feature maps. If we designate the
BN-ReLU-Conv2D as the operation H(x), then the output of layer l is:

()0 1 2 1, , , ,l lH −=x x x x x… (Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer
is called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper,
Densely Connected Convolutional Networks, Huang, and others, 2017 [5]. Therefore,
if the number of feature maps 0x is 0k , then the total number of feature maps at the
end of the 4-layer Dense block in Figure 2.4.1 will be 04 k k× + .

DenseNet also recommends that the Dense block is preceded by BN-ReLU-Conv2D,
along with the number of feature maps twice the growth rate, 0 2k k= × . Therefore,
at the end of the Dense block, the total number of feature maps will be 72. We'll also
use the same kernel size, which is 3. At the output layer, DenseNet suggests that we
perform an average pooling before the Dense() and softmax classifier. If the data
augmentation is not used, a dropout layer must follow the Dense block Conv2D:

Figure 2.4.2: A layer in a Dense block of DenseNet, with and without the bottleneck layer
BN-ReLU-Conv2D(1). We'll include the kernel size as an argument of Conv2D for clarity.

As the network gets deeper, two new problems will occur. Firstly, since every layer
contributes k feature maps, the number of inputs at layer l is () 01l k k− × + . Therefore,
the feature maps can grow rapidly within deep layers, resulting in the computation
becoming slow. For example, for a 101-layer network this will be 1200 + 24 = 1224
for k = 12.

Secondly, similar to ResNet, as the network gets deeper the feature maps size will be
reduced to increase the coverage of the kernel. If DenseNet uses concatenation in the
merge operation, it must reconcile the differences in size.

Deep Neural Networks

[64]

To prevent the number of feature maps from increasing to the point of being
computationally inefficient, DenseNet introduced the Bottleneck layer as shown
in Figure 2.4.2. The idea is that after every concatenation; a 1 × 1 convolution with
a filter size equal to 4k is now applied. This dimensionality reduction technique
prevents the number of feature maps to be processed by Conv2D(3) from rapidly
increasing.

The Bottleneck layer then modifies the DenseNet layer as BN-ReLU-Conv2D(1)-BN-
ReLU-Conv2D(3), instead of just BN-ReLU-Conv2D(3). We've included the kernel size
as an argument of Conv2D for clarity. With the Bottleneck layer, every Conv2D(3) is
processing just the 4k feature maps instead of () 01l k k− × + for layer l. For example,
for the 101-layer network, the input to the last Conv2D(3) is still 48 feature maps for
k = 12 instead of 1224 as computed previously:

Figure 2.4.3: The transition layer in between two Dense blocks

To solve the problem in feature maps size mismatch, DenseNet divides a deep
network into multiple dense blocks that are joined together by transition layers
as shown in the preceding figure. Within each dense block, the feature map size
(that is, width and height) will remain constant.

The role of the transition layer is to transition from one feature map size to a smaller
feature map size between two dense blocks. The reduction in size is usually half. This
is accomplished by the average pooling layer. For example, an AveragePooling2D
with default pool_size=2 reduces the size from (64, 64, 256) to (32, 32, 256). The
input to the transition layer is the output of the last concatenation layer in the
previous dense block.

Chapter 2

[65]

However, before the feature maps are passed to average pooling, their number
will be reduced by a certain compression factor, 0 1θ< < , using Conv2D(1).
DenseNet uses 0.5θ = in their experiment. For example, if the output of the last
concatenation of the previous dense block is (64, 64, 512), then after Conv2D(1)
the new dimensions of the feature maps will be (64, 64, 256). When compression
and dimensionality reduction are put together, the transition layer is made of
BN-Conv2D(1)-AveragePooling2D layers. In practice, batch normalization
precedes the convolutional layer.

Building a 100-layer DenseNet-BC
for CIFAR10
We're now going to build a DenseNet-BC (Bottleneck-Compression) with 100 layers
for the CIFAR10 dataset, using the design principles that we discussed above.

Following table, shows the model configuration, while Figure 2.4.3 shows the model
architecture. Listing 2.4.1 shows us the partial Keras implementation of DenseNet-BC
with 100 layers. We need to take note that we use RMSprop since it converges better
than SGD or Adam when using DenseNet.

Layers Output Size DenseNet-100 BC
Convolution 32 x 32 3 3 2Conv D×

Dense Block
(1)

32 x 32 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 

Transition Layer
(1)

32 x 32 1 1 2
2 2 2

Conv D
AveragePooling D

× 
 × 16 x 16

Dense Block
(2)

16 x 16 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 

Transition Layer
(2)

16 x 16 1 1 2
2 2 2

Conv D
AveragePooling D

× 
 × 8 x 8

Dense Block
(3)

8 x 8 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 

Deep Neural Networks

[66]

Average Pooling 1 x 1 8 8 2AveragePooling D×

Classification Layer Flatten-Dense(10)-softmax

Table 2.4.1: DenseNet-BC with 100 layers for CIFAR10 classification

Figure 2.4.3: Model architecture of DenseNet-BC with 100 layers for CIFAR10 classification

Listing 2.4.1, densenet-cifar10-2.4.1.py: Partial Keras implementation
of DenseNet-BC with 100 layers as shown in Table 2.4.1:

start model definition
densenet CNNs (composite function) are made of BN-ReLU-Conv2D
inputs = Input(shape=input_shape)
x = BatchNormalization()(inputs)
x = Activation('relu')(x)
x = Conv2D(num_filters_bef_dense_block,
 kernel_size=3,
 padding='same',
 kernel_initializer='he_normal')(x)
x = concatenate([inputs, x])

stack of dense blocks bridged by transition layers
for i in range(num_dense_blocks):
 # a dense block is a stack of bottleneck layers
 for j in range(num_bottleneck_layers):
 y = BatchNormalization()(x)
 y = Activation('relu')(y)

Chapter 2

[67]

 y = Conv2D(4 * growth_rate,
 kernel_size=1,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 y = BatchNormalization()(y)
 y = Activation('relu')(y)
 y = Conv2D(growth_rate,
 kernel_size=3,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 x = concatenate([x, y])

 # no transition layer after the last dense block
 if i == num_dense_blocks - 1:
 continue

 # transition layer compresses num of feature maps and
 # reduces the size by 2
 num_filters_bef_dense_block += num_bottleneck_layers * growth_rate
 num_filters_bef_dense_block = int(num_filters_bef_dense_block *
compression_factor)
 y = BatchNormalization()(x)
 y = Conv2D(num_filters_bef_dense_block,
 kernel_size=1,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 x = AveragePooling2D()(y)

add classifier on top
after average pooling, size of feature map is 1 x 1
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
 kernel_initializer='he_normal',
 activation='softmax')(y)

instantiate and compile model

Deep Neural Networks

[68]

orig paper uses SGD but RMSprop works better for DenseNet
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',
 optimizer=RMSprop(1e-3),
 metrics=['accuracy'])
model.summary()

Training the Keras implementation in Listing 2.4.1 for 200 epochs achieves a 93.74%
accuracy vs. the 95.49% as reported in the paper. Data augmentation is used. We
used the same callback functions in ResNet v1/v2 for DenseNet.

For the deeper layers, the growth_rate and depth variables must be changed using
the table on the Python code. However, it will take a substantial amount of time to
train the network at a depth of 250, or 190 as done in the paper. To give us an idea
of training time, each epoch runs for about an hour on a 1060Ti GPU. Though there
is also an implementation of DenseNet in the Keras applications module, it was
trained on ImageNet.

Conclusion
In this chapter, we've presented Functional API as an advanced method for building
complex deep neural network models using Keras. We also demonstrated how the
Functional API could be used to build the multi-input-single-output Y-Network. This
network, when compared to a single branch CNN network, archives better accuracy.
For the rest of the book, we'll find the Functional API indispensable in building more
complex and advanced models. For example, in the next chapter, the Functional API
will enable us to build a modular encoder, decoder, and autoencoder.

We also spent a significant time exploring two important deep networks, ResNet and
DenseNet. Both of these networks have been used not only in classification but also
in other areas, such as segmentation, detection, tracking, generation, and visual/
semantic understanding. We need to remember that it's more important that we
understand the model design decisions in ResNet and DenseNet more closely than
just following the original implementation. In that manner, we'll be able to use the
key concepts of ResNet and DenseNet for our purposes.

Chapter 2

[69]

References
1.	 Kaiming He and others. Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification. Proceedings of the IEEE international
conference on computer vision, 2015 (https://www.cv-foundation.
org/openaccess/content_iccv_2015/papers/He_Delving_Deep_
into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.
pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf).

2.	 Kaiming He and others. Deep Residual Learning for Image Recognition.
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016a(http://openaccess.thecvf.com/content_cvpr_2016/
papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf).

3.	 Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. ICLR, 2015(https://arxiv.org/
pdf/1409.1556/).

4.	 Kaiming He and others. Identity Mappings in Deep Residual Networks.
European Conference on Computer Vision. Springer International
Publishing, 2016b(https://arxiv.org/pdf/1603.05027.pdf).

5.	 Gao Huang and others. Densely Connected Convolutional Networks.
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017(http://openaccess.thecvf.com/content_cvpr_2017/
papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.
pdf).

6.	 Saining Xie and others. Aggregated Residual Transformations for Deep Neural
Networks. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on. IEEE, 2017(http://openaccess.thecvf.com/content_
cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_
CVPR_2017_paper.pdf).

7.	 Gustav Larsson, Michael Maire and Gregory Shakhnarovich. Fractalnet:
Ultra-Deep Neural Networks Without Residuals. arXiv preprint
arXiv:1605.07648, 2016 (https://arxiv.org/pdf/1605.07648.pdf).

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1409.1556/
https://arxiv.org/pdf/1409.1556/
https://arxiv.org/pdf/1603.05027.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1605.07648.pdf

[71]

Autoencoders
In the previous chapter, Chapter 2, Deep Neural Networks, you were introduced
to the concepts of deep neural networks. We're now going to move on to look
at autoencoders, which are a neural network architecture that attempts to find
a compressed representation of the given input data.

Similar to the previous chapters, the input data may be in multiple forms including,
speech, text, image, or video. An autoencoder will attempt to find a representation
or code in order to perform useful transformations on the input data. As an example,
in denoising autoencoders, a neural network will attempt to find a code that can
be used to transform noisy data into clean ones. Noisy data could be in the form
of an audio recording with static noise which is then converted into clear sound.
Autoencoders will learn the code automatically from the data alone without
human labeling. As such, autoencoders can be classified under unsupervised
learning algorithms.

In later chapters of this book, we will look at Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) which are also representative
forms of unsupervised learning algorithms. This is in contrast to the supervised
learning algorithms we discussed in the previous chapters where human
annotations were required.

In its simplest form, an autoencoder will learn the representation or code by
trying to copy the input to output. However, using an autoencoder is not as simple
as copying the input to output. Otherwise, the neural network would not be able
to uncover the hidden structure in the input distribution.

An autoencoder will encode the input distribution into a low-dimensional tensor,
which usually takes the form of a vector. This will approximate the hidden
structure that is commonly referred to as the latent representation, code, or vector.
This process constitutes the encoding part. The latent vector will then be decoded
by the decoder part to recover the original input.

Autoencoders

[72]

As a result of the latent vector being a low-dimensional compressed representation
of the input distribution, it should be expected that the output recovered by the
decoder can only approximate the input. The dissimilarity between the input and
the output can be measured by a loss function.

But why would we use autoencoders? Simply put, autoencoders have practical
applications both in their original form or as part of more complex neural networks.
They're a key tool in understanding the advanced topics of deep learning as
they give you a low-dimensional latent vector. Furthermore, it can be efficiently
processed to perform structural operations on the input data. Common operations
include denoising, colorization, feature-level arithmetic, detection, tracking, and
segmentation, to name just a few.

In summary, the goal of this chapter is to present:

•	 The principles of autoencoders
•	 How to implement autoencoders into the Keras neural network library
•	 The main features of denoising and colorization autoencoders

Principles of autoencoders
In this section, we're going to go over the principles of autoencoders. In this section,
we're going to be looking at autoencoders with the MNIST dataset, which we were
first introduced to in the previous chapters.

Firstly, we need to be made aware that an autoencoder has two operators, these are:

•	 Encoder: This transforms the input, x, into a low-dimensional latent vector,
z = f(x). Since the latent vector is of low dimension, the encoder is forced
to learn only the most important features of the input data. For example, in
the case of MNIST digits, the important features to learn may include writing
style, tilt angle, roundness of stroke, thickness, and so on. Essentially, these
are the most important information needed to represent digits zero to nine.

•	 Decoder: This tries to recover the input from the latent vector, ()g =z �x
. Although the latent vector has a low dimension, it has a sufficient size
to allow the decoder to recover the input data.

The goal of the decoder is to make �x as close as possible to x. Generally, both the
encoder and decoder are non-linear functions. The dimension of z is a measure
of the number of salient features it can represent. The dimension is usually much
smaller than the input dimensions for efficiency and in order to constrain the
latent code to learn only the most salient properties of the input distribution[1].

Chapter 3

[73]

The autoencoder has the tendency to memorize the input when the dimension of the
latent code is significantly bigger than x.

A suitable loss function, (), �L x x , is a measure of how dissimilar the input, x, from
the output which is the recovered input, �x . As shown in the following equation,
the Mean Squared Error (MSE) is an example of such a loss function:

() ()2
1

1 i m

i i
i

, MSE x x
m

=

=

= = −∑� �L x x (Equation 3.1.1)

In this example, m is the output dimensions (For example, in MNIST m = width
× height × channels = 28 × 28 × 1 = 784). ix and ix� are the elements of x and x�
respectively. Since the loss function is a measure of dissimilarity between the input
and output, we're able to use alternative reconstruction loss functions such as the
binary cross entropy or structural similarity index (SSIM).

Similar to the other neural networks, the autoencoder tries to make this error
or loss function as small as possible during training. Figure 3.1.1 shows the
autoencoder. The encoder is a function that compresses the input, x, into a low-
dimensional latent vector, z. This latent vector represents the important features
of the input distribution. The decoder then tries to recover the original input from
the latent vector in the form of x� .

Figure 3.1.1: Block diagram of an autoencoder

 Figure 3.1.2: An autoencoder with MNIST digit input and output. The latent vector is 16-dim.

Autoencoders

[74]

To put the autoencoder in context, x can be an MNIST digit which has a dimension of
28 × 28 × 1 = 784. The encoder transforms the input into a low-dimensional z that can
be a 16-dimension latent vector. The decoder will attempt to recover the input in the
form of x� from z. Visually, every MNIST digit x will appear similar to x� . Figure 3.1.2
demonstrates this autoencoding process to us. We can observe that the decoded digit
7, while not exactly the same remains close enough.

Since both encoder and decoder are non-linear functions, we can use neural
networks to implement both. For example, in the MNIST dataset, the autoencoder
can be implemented by MLP or CNN. The autoencoder can be trained by minimizing
the loss function through backpropagation. Similar to other neural networks, the
only requirement is that the loss function must be differentiable.

If we treat the input as a distribution, we can interpret the encoder as an encoder of
distribution, ()p |z x and the decoder, as the decoder of distribution, ()p |x z . The loss
function of the autoencoder is expressed as follows:

()log |p= − zL x (Equation 3.1.2)

The loss function simply means that we would like to maximize the chances of
recovering the input distribution given the latent vector distribution. If the decoder
output distribution is assumed to be Gaussian, then the loss function boils down
to MSE since:

() () () ()22 2

1 11

log | log ; , log ; ,
m m m

i i i i i i
i ii

p x x x x x xσ σ α
= ==

= − = − = − −∑ ∑∏z � � �L N Nx (Equation 3.1.3)

In this example, ()2; ,i ix x σ�N represents a Gaussian distribution with a mean of ix� and
variance of 2σ . A constant variance is assumed. The decoder output ix� is assumed to
be independent. While m is the output dimension.

Building autoencoders using Keras
We're now going to move onto something really exciting, building an autoencoder
using Keras library. For simplicity, we'll be using the MNIST dataset for the first set
of examples. The autoencoder will then generate a latent vector from the input data
and recover the input using the decoder. The latent vector in this first example is
16-dim.

Chapter 3

[75]

Firstly, we're going to implement the autoencoder by building the encoder.
Listing 3.2.1 shows the encoder that compresses the MNIST digit into a 16-dim latent
vector. The encoder is a stack of two Conv2D. The final stage is a Dense layer with
16 units to generate the latent vector. Figure 3.2.1 shows the architecture model
diagram generated by plot_model() which is the same as the text version produced
by encoder.summary(). The shape of the output of the last Conv2D is saved to
compute the dimensions of the decoder input layer for easy reconstruction of the
MNIST image.

The following Listing 3.2.1, shows autoencoder-mnist-3.2.1.py. This
is an autoencoder implementation using Keras. The latent vector is 16-dim:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.datasets import mnist
from keras.utils import plot_model
from keras import backend as K

import numpy as np
import matplotlib.pyplot as plt

load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
encoder/decoder number of filters per CNN layer
layer_filters = [32, 64]

Autoencoders

[76]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

shape info needed to build decoder model
so we don't do hand computation
the input to the decoder's first Conv2DTranspose
will have this shape
shape is (7, 7, 64) which is processed by
the decoder back to (28, 28, 1)
shape = K.int_shape(x)

generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()
plot_model(encoder, to_file='encoder.png', show_shapes=True)

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

Chapter 3

[77]

reconstruct the input
outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)

autoencoder = encoder + decoder
instantiate autoencoder model
 autoencoder = Model(inputs,
 decoder(encoder(inputs)),
 name='autoencoder')
 autoencoder.summary()
 plot_model(autoencoder,
 to_file='autoencoder.png',
 show_shapes=True)

Mean Square Error (MSE) loss funtion, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

train the autoencoder
autoencoder.fit(x_train,
 x_train,
 validation_data=(x_test, x_test),
 epochs=1,
 batch_size=batch_size)

predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test)

display the 1st 8 test input and decoded images
imgs = np.concatenate([x_test[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')

Autoencoders

[78]

plt.title('Input: 1st 2 rows, Decoded: last 2 rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('input_and_decoded.png')
plt.show()

Figure 3.2.1: The encoder model is a made up of Conv2D(32)-Conv2D(64)-Dense(16)
in order to generate the low dimensional latent vector

The decoder in Listing 3.2.1 decompresses the latent vector in order to recover the
MNIST digit. The decoder input stage is a Dense layer that will accept the latent
vector. The number of units is equal to the product of the saved Conv2D output
dimensions from the encoder. This is done so we can easily resize the output
of the Dense layer for Conv2DTranspose to finally recover the original MNIST
image dimensions.

The decoder is made of a stack of three Conv2DTranspose. In our case, we're going to
use a Transposed CNN (sometimes called deconvolution), which is more commonly
used in decoders. We can imagine transposed CNN (Conv2DTranspose) as the
reversed process of CNN. In a simple example, if the CNN converts an image to
feature maps, the transposed CNN will produce an image given feature maps. Figure
3.2.2 shows the decoder model.

Chapter 3

[79]

Figure 3.2.2: The decoder model is made of a Dense(16)-Conv2DTranspose(64) -Conv2DTranspose(32)-
Conv2DTranspose(1). The input is the latent vector decoded to recover the original input.

By joining the encoder and decoder together, we're able to build the autoencoder.
Figure 3.2.3 illustrates the model diagram of the autoencoder. The tensor output
of the encoder is also the input to a decoder which generates the output of the
autoencoder. In this example, we'll be using the MSE loss function and Adam
optimizer. During training, the input is the same as the output, x_train. We
should note that in our example, there are only a few layers which are sufficient
enough to drive the validation loss to 0.01 in one epoch. For more complex datasets,
you may need a deeper encoder, decoder as well as more epochs of training.

Figure 3.2.3: The autoencoder model is built by joining an encoder model and
a decoder model together. There are 178k parameters for this autoencoder.

Autoencoders

[80]

After training the autoencoder for one epoch with a validation loss of 0.01,
we're able to verify if it can encode and decode the MNIST data that it has not seen
before. Figure 3.2.4 shows us eight samples from the test data and the corresponding
decoded images. Except for minor blurring in the images, we're able to easily
recognize that the autoencoder is able to recover the input with good quality.
The results will improve as we train for a larger number of epochs.

Figure 3.2.4: Prediction of the autoencoder from the test data.
The first 2 rows are the original input test data. The last 2 rows are the predicted data.

At this point, we may be wondering how we can visualize the latent vector in space.
A simple method for visualization is to force the autoencoder to learn the MNIST
digits features using a 2-dim latent vector. From there, we're able to project this latent
vector on a 2D space in order to see how the MNIST codes are distributed. By setting
the latent_dim = 2 in autoencoder-mnist-3.2.1.py code and by using the plot_
results() to plot the MNIST digit as a function of the 2-dim latent vector, Figure
3.2.5 and Figure 3.2.6 shows the distribution of MNIST digits as a function of latent
codes. These figures were generated after 20 epochs of training. For convenience,
the program is saved as autoencoder-2dim-mnist-3.2.2.py with the partial code
shown in Listing 3.2.2.

Following is Listing 3.2.2, autoencoder-2dim-mnist-3.2.2.py, which shows the
function for visualization of the MNIST digits distribution over 2-dim latent codes.
The rest of the code is practically similar to Listing 3.2.1 and no longer shown here.

def plot_results(models,
 data,

Chapter 3

[81]

 batch_size=32,
 model_name="autoencoder_2dim"):
 """Plots 2-dim latent values as color gradient
 then, plot MNIST digits as function of 2-dim latent vector

 Arguments:
 models (list): encoder and decoder models
 data (list): test data and label
 batch_size (int): prediction batch size
 model_name (string): which model is using this function
 """

 encoder, decoder = models
 x_test, y_test = data
 os.makedirs(model_name, exist_ok=True)

 filename = os.path.join(model_name, "latent_2dim.png")
 # display a 2D plot of the digit classes in the latent space
 z = encoder.predict(x_test,
 batch_size=batch_size)
 plt.figure(figsize=(12, 10))
 plt.scatter(z[:, 0], z[:, 1], c=y_test)
 plt.colorbar()
 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.savefig(filename)
 plt.show()

 filename = os.path.join(model_name, "digits_over_latent.png")
 # display a 30x30 2D manifold of the digits
 n = 30
 digit_size = 28
 figure = np.zeros((digit_size * n, digit_size * n))
 # linearly spaced coordinates corresponding to the 2D plot
 # of digit classes in the latent space
 grid_x = np.linspace(-4, 4, n)
 grid_y = np.linspace(-4, 4, n)[::-1]

 for i, yi in enumerate(grid_y):
 for j, xi in enumerate(grid_x):
 z = np.array([[xi, yi]])
 x_decoded = decoder.predict(z)
 digit = x_decoded[0].reshape(digit_size, digit_size)
 figure[i * digit_size: (i + 1) * digit_size,

Autoencoders

[82]

 j * digit_size: (j + 1) * digit_size] = digit

 plt.figure(figsize=(10, 10))
 start_range = digit_size // 2
 end_range = n * digit_size + start_range + 1
 pixel_range = np.arange(start_range, end_range, digit_size)
 sample_range_x = np.round(grid_x, 1)
 sample_range_y = np.round(grid_y, 1)
 plt.xticks(pixel_range, sample_range_x)
 plt.yticks(pixel_range, sample_range_y)
 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.imshow(figure, cmap='Greys_r')
 plt.savefig(filename)
 plt.show()

Figure 3.2.5: A MNIST digit distribution as a function of latent code dimensions, z[0] and z[1].
Original color photo can be found on the book GitHub repository, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.

Chapter 3

[83]

Figure 3.2.6: Digits generated as the 2-dim latent vector space is navigated

In Figure 3.2.5, we'll be able to see that the latent codes for a specific digit are
clustering on a region in space. For example, digit 0 is on the lower left quadrant,
while digit 1 is on the upper right quadrant. Such clustering is mirrored in Figure
3.2.6. In fact, the same figure shows the result of navigating or generating new
digits from the latent space as shown in the Figure 3.2.5.

For example, starting from the center and varying the value of a 2-dim latent vector
towards the lower left quadrant, shows us that the digit changes from 2 to 0. This
is expected since from Figure 3.2.5, we're able to see that the codes for the digit 2
clusters are near the center, and as discussed digit 0 codes cluster in the lower left
quadrant. For Figure 3.2.6, we've only explored the regions between -4.0 and +4.0
for each latent dimension.

Autoencoders

[84]

As can be seen in Figure 3.2.5, the latent code distribution is not continuous and
ranges beyond 4.0± . Ideally, it should look like a circle where there are valid values
everywhere. Because of this discontinuity, there are regions where if we decode the
latent vector, hardly recognizable digits will be produced.

Denoising autoencoder (DAE)
We're now going to build an autoencoder with a practical application. Firstly,
let's paint a picture and imagine that the MNIST digits images were corrupted by
noise, thus making it harder for humans to read. We're able to build a Denoising
Autoencoder (DAE) to remove the noise from these images. Figure 3.3.1 shows us
three sets of MNIST digits. The top rows of each set (for example, MNIST digits 7, 2,
1, 9, 0, 6, 3, 4, 9) are the original images. The middle rows show the inputs to DAE,
which are the original images corrupted by noise. The last rows show the outputs
of DAE:

Figure 3.3.1: Original MNIST digits (top rows),
corrupted original images (middle rows) and denoised images (last rows)

Figure 3.3.2: The input to the denoising autoencoder is the corrupted image.
The output is the clean or denoised image. The latent vector is assumed to be 16-dim.

Chapter 3

[85]

As shown in Figure 3.3.2, the denoising autoencoder has practically the same
structure as the autoencoder for MNIST that we presented in the previous section.
The input is defined as:

orig= noise+x x (Equation 3.3.1)

In this formula, origx represents the original MNIST image corrupted by noise.

The objective of the encoder is to discover how to produce the latent vector, z, that
will enable the decoder to recover origx by minimizing the dissimilarity loss function
such as MSE, as shown here:

() ()2
1

1,
i

i m

orig orig i
i

MSE x x
m

=

=

= = −∑� �L x x (Equation 3.3.2)

In this example, m is the output dimensions (for example, in MNIST m = width ×
height × channels = 28 × 28 × 1 = 784).

iorigx and ix� are the elements of origx and �x ,
respectively.

To implement DAE, we're going to need to make a few changes on the autoencoder
presented in the previous section. Firstly, the training input data should be corrupted
MNIST digits. The training output data is the same original clean MNIST digits. This
is like telling the autoencoder what the corrected images should be or asking it to
figure out how to remove noise given a corrupted image. Lastly, we must validate
the autoencoder on the corrupted MNIST test data.

The MNIST digit 7 shown on the left of Figure 3.3.2 is an actual corrupted image
input. The one on the right is the clean image output of a trained denoising
autoencoder.

Listing 3.3.1 shows the denoising autoencoder which has been contributed to the
Keras GitHub repository. Using the same MNIST dataset, we're able to simulate
corrupted images by adding random noise. The noise added is a Gaussian
distribution with a mean, 0.5µ = and standard deviation of 0.5σ = . Since adding
random noise may push the pixel data into invalid values of less than 0 or greater
than 1, the pixel values are clipped to [0.1, 1.0] range.

Everything else will remain practically the same as the autoencoder from the
previous section. We'll use the same MSE loss function and Adam optimizer as the
autoencoder. However, the number of epoch for training has increased to 10. This
is to allow sufficient parameter optimization.

Autoencoders

[86]

Figure 3.3.1 shows actual validation data with both the corrupted and denoised test
MNIST digits. We're even able to see that humans will find it difficult to read the
corrupted MNIST digits. Figure 3.3.3 shows a certain level of robustness of DAE as
the level of noise is increased from 0.5σ = to 0.75σ = and . At 0.75σ =
, DAE is still able to recover the original images. However, at 1.0σ = , a few digits
such as 4 and 5 in the second and third sets can no longer be recovered correctly.

Figure 3.3.3: Performance of denoising autoencoder as the noise level is increased

As seen in Listing 3.3.1, denoising-autoencoder-mnist-3.3.1.py shows
us a Denoising autoencoder:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

np.random.seed(1337)

load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

reshape to (28, 28, 1) and normalize input images

Chapter 3

[87]

image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

generate corrupted MNIST images by adding noise with normal dist
centered at 0.5 and std=0.5
noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_noisy = x_train + noise
noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_noisy = x_test + noise

adding noise may exceed normalized pixel values>1.0 or <0.0
clip pixel values >1.0 to 1.0 and <0.0 to 0.0
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

shape info needed to build decoder model
so we don't do hand computation
the input to the decoder's first Conv2DTranspose
will have this shape
shape is (7, 7, 64) which can be processed by

Autoencoders

[88]

the decoder back to (28, 28, 1)
shape = K.int_shape(x)

generate the latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

reconstruct the denoised input
outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 padding='same',
 activation='sigmoid',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

autoencoder = encoder + decoder
instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)),
name='autoencoder')
autoencoder.summary()

Chapter 3

[89]

Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

train the autoencoder
autoencoder.fit(x_train_noisy,
 x_train,
 validation_data=(x_test_noisy, x_test),
 epochs=10,
 batch_size=batch_size)

predict the autoencoder output from corrupted test images
x_decoded = autoencoder.predict(x_test_noisy)

3 sets of images with 9 MNIST digits
1st rows - original images
2nd rows - images corrupted by noise
3rd rows - denoised images
rows, cols = 3, 9
num = rows * cols
imgs = np.concatenate([x_test[:num], x_test_noisy[:num], x_
decoded[:num]])
imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
imgs = np.vstack(np.split(imgs, rows, axis=1))
imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
imgs = (imgs * 255).astype(np.uint8)
plt.figure()
plt.axis('off')
plt.title('Original images: top rows, '
 'Corrupted Input: middle rows, '
 'Denoised Input: third rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
Image.fromarray(imgs).save('corrupted_and_denoised.png')
plt.show()

Automatic colorization autoencoder
We're now going to work on another practical application of autoencoders. In this
case, we're going to imagine that we have a grayscale photo and that we want to
build a tool that will automatically add color to them. We would like to replicate the
human abilities in identifying that the sea and sky are blue, the grass field and trees
are green, while clouds are white, and so on.

Autoencoders

[90]

As shown in Figure 3.4.1, if we are given a grayscale photo of a rice field on the
foreground, a volcano in the background and sky on top, we're able to add the
appropriate colors.

Figure 3.4.1: Adding color to a grayscale photo of the Mayon Volcano. A colorization network should replicate
human abilities by adding color to a grayscale photo. Left photo is grayscale. The right photo is color. Original

color photo can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-
Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.

A simple automatic colorization algorithm seems like a suitable problem for
autoencoders. If we can train the autoencoder with a sufficient number of grayscale
photos as input and the corresponding colored photos as output, it could possibly
discover the hidden structure on properly applying colors. Roughly, it is the reverse
process of denoising. The question is, can an autoencoder add color (good noise)
to the original grayscale image?

Listing 3.4.1 shows the colorization autoencoder network. The colorization
autoencoder network is a modified version of denoising autoencoder that we
used for the MNIST dataset. Firstly, we need a dataset of grayscale to colored
photos. The CIFAR10 database, which we have used before, has 50,000 training
and 10,000 testing 32 × 32 RGB photos that can be converted to grayscale. As shown
in the following listing, we're able to use the rgb2gray() function to apply weights
on R, G, and B components to convert from color to grayscale.

Listing 3.4.1, colorization-autoencoder-cifar10-3.4.1.py, shows us
a colorization autoencoder using the CIFAR10 dataset:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten

Chapter 3

[91]

from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
from keras.datasets import cifar10
from keras.utils import plot_model
from keras import backend as K

import numpy as np
import matplotlib.pyplot as plt
import os

convert from color image (RGB) to grayscale
source: opencv.org
grayscale = 0.299*red + 0.587*green + 0.114*blue
def rgb2gray(rgb):
 return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

load the CIFAR10 data
(x_train, _), (x_test, _) = cifar10.load_data()

input image dimensions
we assume data format "channels_last"
img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
channels = x_train.shape[3]

create saved_images folder
imgs_dir = 'saved_images'
save_dir = os.path.join(os.getcwd(), imgs_dir)
if not os.path.isdir(save_dir):
 os.makedirs(save_dir)

display the 1st 100 input images (color and gray)
imgs = x_test[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test color images (Ground Truth)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/test_color.png' % imgs_dir)
plt.show()

Autoencoders

[92]

convert color train and test images to gray
x_train_gray = rgb2gray(x_train)
x_test_gray = rgb2gray(x_test)

display grayscale version of test images
imgs = x_test_gray[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test gray images (Input)')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('%s/test_gray.png' % imgs_dir)
plt.show()

normalize output train and test color images
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

normalize input train and test grayscale images
x_train_gray = x_train_gray.astype('float32') / 255
x_test_gray = x_test_gray.astype('float32') / 255

reshape images to row x col x channel for CNN output/validation
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols,
channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)

reshape images to row x col x channel for CNN input
x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows,
img_cols, 1)
x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows, img_
cols, 1)

network parameters
input_shape = (img_rows, img_cols, 1)
batch_size = 32
kernel_size = 3
latent_dim = 256
encoder/decoder number of CNN layers and filters per layer
layer_filters = [64, 128, 256]

Chapter 3

[93]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
stack of Conv2D(64)-Conv2D(128)-Conv2D(256)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

shape info needed to build decoder model
so we don't do hand computation
the input to the decoder's first Conv2DTranspose
will have this shape
shape is (4, 4, 256) which is processed
by the decoder to (32, 32, 3)
shape = K.int_shape(x)

generate a latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
x = Dense(shape[1]*shape[2]*shape[3])(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(256)-Conv2DTranspose(128)-
Conv2DTranspose(64)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

outputs = Conv2DTranspose(filters=channels,
 kernel_size=kernel_size,

Autoencoders

[94]

 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

autoencoder = encoder + decoder
instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)),
name='autoencoder')
autoencoder.summary()

prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'colorized_ae_model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
 os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)

reduce learning rate by sqrt(0.1) if the loss does not improve in 5
epochs
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
 cooldown=0,
 patience=5,
 verbose=1,
 min_lr=0.5e-6)

save weights for future use
(e.g. reload parameters w/o training)
checkpoint = ModelCheckpoint(filepath=filepath,
 monitor='val_loss',
 verbose=1,
 save_best_only=True)

Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

called every epoch
callbacks = clr_reducer, checkpoint]

train the autoencoder
autoencoder.fit(x_train_gray,

Chapter 3

[95]

 x_train,
 validation_data=(x_test_gray, x_test),
 epochs=30,
 batch_size=batch_size,
 callbacks=callbacks)

predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test_gray)

display the 1st 100 colorized images
imgs = x_decoded[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Colorized test images (Predicted)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/colorized.png' % imgs_dir)
plt.show()

We've increased the capacity of the autoencoder by adding one more block of
convolution and transposed convolution. We've also doubled the number of filters
at each CNN block. The latent vector is now 256-dim in order to increase the number
of salient properties it can represent as discussed in the autoencoder section. Finally,
the output filter size has increased to three, or equal to the number of channels in
RGB of the expected colored output.

The colorization autoencoder is now trained with the grayscale as inputs and
original RGB images as outputs. The training will take more epochs and uses the
learning rate reducer to scale down the learning rate when the validation loss is not
improving. This can be easily done by telling the callbacks argument in the Keras
fit() function to call the lr_reducer() function.

Figure 3.4.2 demonstrates colorization of grayscale images from the test dataset of
CIFAR10. Figure 3.4.3 compares the ground truth with the colorization autoencoder
prediction. The autoencoder performs an acceptable colorization job. The sea or sky
is predicted to be blue, animals have varying brown shades, the cloud is white, and
so on.

Autoencoders

[96]

There are some noticeable wrong predictions like red vehicles have become blue
or blue vehicles become red, and the occasional green field has been mistaken
as blue skies, and dark or golden skies are converted to blue skies.

Figure 3.4.2: Automatic grayscale to color image conversion using the autoencoder. CIFAR10 test
grayscale input images (left) and predicted color images (right). Original color photo can be found on the

book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/
master/chapter3-autoencoders/README.md.

Figure 3.4.3: Side by side comparison of ground truth color images and predicted colorized images. Original
color photos can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.

Chapter 3

[97]

Conclusion
In this chapter, we've been introduced to autoencoders, which are neural
networks that compress input data into low-dimensional codes in order to
efficiently perform structural transformations such as denoising and colorization.
We've laid the foundations to the more advanced topics of GANs and VAEs, that
we will introduce in later chapters, while still exploring how autoencoders can
utilize Keras. We've demonstrated how to implement an autoencoder from two
building block models, both encoder and decoder. We've also learned how the
extraction of a hidden structure of input distribution is one of the common tasks
in AI.

Once the latent code has been uncovered, there are many structural operations
that can be performed on the original input distribution. In order to gain a better
understanding of the input distribution, the hidden structure in the form of the
latent vector can be visualized using low-level embedding similar to what we did
in this chapter or through more sophisticated dimensionality reduction techniques
such t-SNE or PCA.

Apart from denoising and colorization, autoencoders are used in converting
input distribution to low-dimensional latent codes that can be further processed
for other tasks such as segmentation, detection, tracking, reconstruction, visual
understanding, and so on. In Chapter 8, Variational Autoencoders (VAEs), we will
discuss VAEs which are structurally the same as autoencoder but differ by having an
interpretable latent code that can produce a continuous latent codes projection. In the
next chapter, we will embark on one of the most important recent breakthroughs in
AI, the introduction of GANs where we will learn of the core strengths of GANs and
their ability to synthesize data or signals that look real.

References
1.	 Ian Goodfellow and others. Deep learning. Vol. 1. Cambridge: MIT press,

2016 (http://www.deeplearningbook.org/).

http://www.deeplearningbook.org/

[99]

Generative Adversarial
Networks (GANs)

In this chapter, we'll be investigating Generative Adversarial Networks (GANs)
[1], the first of three artificial intelligence algorithms that we'll be looking at. GANs
belong to the family of generative models. However, unlike autoencoders, generative
models are able to create new and meaningful outputs given arbitrary encodings.

In this chapter, the working principles of GANs will be discussed. We'll also review
the implementations of several early GANs within Keras. While later on the chapter,
we'll be demonstrating the techniques needed to achieve stable training. The scope
of this chapter covers two popular examples of GAN implementations, Deep
Convolutional GAN (DCGAN) [2] and Conditional GAN (CGAN) [3].

In summary, the goal of this chapter is to:

•	 Introduce the principles of GANs
•	 How to implement GANs such as DCGAN and CGAN in Keras

An overview of GANs
Before we move into the more advanced concepts of GANs, let's start by going
over GANs, and introducing the underlying concepts of them. GANs are very
powerful; this simple statement is proven by the fact that they can generate new
celebrity faces that are not of real people by performing latent space interpolations.

Generative Adversarial Networks (GANs)

[100]

A great example of the advanced features of GANs [4] can be seen with this
YouTube video (https://youtu.be/G06dEcZ-QTg). The video, which shows how
GANs can be utilized to produce realistic faces just shows how powerful they can
be. This topic is much more advanced than anything we've looked at before in this
book. For example, the above video is something that can't be accomplished easily
by autoencoders, which we covered in Chapter 3, Autoencoders.

GANs are able to learn how to model the input distribution by training two
competing (and cooperating) networks referred to as generator and discriminator
(sometimes known as critic). The role of the generator is to keep on figuring out
how to generate fake data or signals (this includes, audio and images) that can
fool the discriminator. Meanwhile, the discriminator is trained to distinguish
between fake and real signals. As the training progresses, the discriminator will
no longer be able to see the difference between the synthetically generated data
and the real ones. From there, the discriminator can be discarded, and the generator
can now be used to create new realistic signals that have never been observed before.

The underlying concept of GANs is straightforward. However, one thing
we'll find is that the most challenging aspect is how do we achieve stable training
of the generator-discriminator network? There must be a healthy competition
between the generator and discriminator in order for both networks to be able
to learn simultaneously. Since the loss function is computed from the output
of the discriminator, its parameters update is fast. When the discriminator
converges faster, the generator no longer receives sufficient gradient updates for
its parameters and fails to converge. Other than being hard to train, GANs can also
suffer from either a partial or total modal collapse, a situation wherein the generator
is producing almost similar outputs for different latent encodings.

Principles of GANs
As shown in Figure 4.1.1 a GAN is analogous to a counterfeiter (generator) - police
(discriminator) scenario. At the academy, the police are taught how to determine if
a dollar bill is either genuine or fake. Samples of real dollar bills from the bank and
fake money from the counterfeiter are used to train the police. However, from time
to time, the counterfeiter will attempt to pretend that he printed real dollar bills.
Initially, the police will not be fooled and will tell the counterfeiter why the money
is fake. Taking into consideration this feedback, the counterfeiter hones his skills
again and attempts to produce new fake dollar bills. As expected the police will
be able to both spot the money as fake and justify why the dollar bills are fake.

https://youtu.be/G06dEcZ-QTg

Chapter 4

[101]

Figure 4.1.1: The generator and discriminator of GANs are analogous to the counterfeiter and the police.
The goal of the counterfeiter is to fool the police into believing that the dollar bill is real.

This scenario continues indefinitely but eventually, a time will come when
the counterfeiter has mastered his skills in making fake dollar bills that are
indistinguishable from real ones. The counterfeiter can then infinitely print
dollar bills without getting caught by the police as they are no longer indefinable
as counterfeit.

Figure 4.1.2: A GAN is made up of two networks, a generator, and a discriminator.
The discriminator is trained to distinguish between real and fake signals or data.

The generator's job is to generate fake signals or data that can eventually fool the discriminator.

Generative Adversarial Networks (GANs)

[102]

As shown in Figure 4.1.2, a GAN is made up of two networks, a generator, and
a discriminator. The input to the generator is noise, and the output is a synthesized
signal. Meanwhile, the discriminator's input will be either a real or a synthesized
signal. Genuine signals come from the true sampled data, while the fake signals
come from the generator. All of the valid signals are labeled 1.0 (that is, 100%
probability of being real) while all the synthesized signals are labeled 0.0 (that
is, 0% probability of being real). Since the labeling process is automated, GANs
are still considered part of the unsupervised learning approach in deep learning.

The objective of the discriminator is to learn from this supplied dataset on how
to distinguish real signals from fake signals. During this part of GAN training,
only the discriminator parameters will be updated. Like a typical binary classifier,
the discriminator is trained to predict on a range of 0.0 to 1.0 in confidence values
on how close a given input signal is to the true one. However, this is only half
of the story.

At regular intervals, the generator will pretend that its output is a genuine signal
and will ask the GAN to label it as 1.0. When the fake signal is then presented
to the discriminator, naturally it will be classified as fake with a label close to 0.0.
The optimizer computes the generator parameter updates based on the presented
label (that is, 1.0). It also takes its own prediction into account when training
on this new data. In other words, the discriminator has some doubt about its
prediction, and so, GANs takes that into consideration. This time, GANs will let
the gradients backpropagate from the last layer of the discriminator down to the
first layer of the generator. However, in most practices, during this phase of training,
the discriminator parameters are temporarily frozen. The generator will use the
gradients to update its parameters and improve its ability to synthesize fake signals.

Overall, the whole process is akin to two networks competing with one another
while still cooperating at the same time. When the GAN training converges, the
end result is a generator that can synthesize signals. The discriminator thinks these
synthesized signals are real or with a label near 1.0, which means the discriminator
can then be discarded. The generator part will be useful in producing meaningful
outputs from arbitrary noise inputs.

Chapter 4

[103]

Figure 4.1.3: Training the discriminator is similar to training a binary classifier network using binary
cross-entropy loss. The fake data is supplied by the generator while real data is from true samples.

As shown in the preceding figure, the discriminator can be trained by minimizing
the loss function in the following equation:

() () ()() () ()()()~, log log 1
data

D G D
x p zx zθ θ =− − −E EL D D G (Equation 4.1.1)

The equation is just the standard binary cross-entropy cost function. The loss is
the negative sum of the expectation of correctly identifying real data, ()xD , and
the expectation of 1.0 minus correctly identifying synthetic data, ()()1 z−D G . The
log does not change the location of the local minima. Two mini-batches of data are
supplied to the discriminator during training:

1.	 x , real from sampled data (that is, ~ datax p) with label 1.0
2.	 ()x z′ =G , fake data from the generator with label 0.0

In order to minimize the loss function, the discriminator parameters, ()Dθ , will be
updated through backpropagation by correctly identifying the genuine data, ()xD
, and synthetic data, ()()1 z−D G . Correctly identifying real data is equivalent
to () 1.0x →D while correctly classifying fake data is the same as ()() 0.0z →D G
or ()()()1 1.0z− →D G . In this equation, z is the arbitrary encoding or noise
vector that is used by the generator to synthesize new signals. Both contribute
to minimizing the loss function.

To train the generator, GAN considers the total of the discriminator and generator
losses as a zero-sum game. The generator loss function is simply the negative of the
discriminator loss function:

() () ()() () () ()(), ,G G D D G Dθ θ θ θ=−L L (Equation 4.1.2)

Generative Adversarial Networks (GANs)

[104]

This can then be rewritten more aptly as a value function:

() () ()() () () ()(), ,G G D D G Dθ θ θ θ=−V L (Equation 4.1.3)

From the perspective of the generator, Equation 4.1.3 should be minimized. From
the point of view of the discriminator, the value function should be maximized.
Therefore, the generator training criterion can be written as a minimax problem:

()
() ()

() () ()()minmin ,
G D

G D G Darg
θ θ

θ θ θ∗ = V (Equation 4.1.4)

Occasionally, we'll try to fool the discriminator by pretending that the synthetic
data is real with label 1.0. By maximizing with respect to ()Dθ , the optimizer sends
gradient updates to the discriminator parameters to consider this synthetic data as
real. At the same time, by minimizing with respect to ()Gθ , the optimizer will train
the generator's parameters on how to trick the discriminator. However, in practice,
the discriminator is confident in its prediction in classifying the synthetic data as fake
and will not update its parameters. Furthermore, the gradient updates are small and
have diminished significantly as they propagate to the generator layers. As a result,
the generator fails to converge:

Figure 4.1.4: Training the generator is like training a network using a binary cross-entropy loss function.
The fake data from the generator is presented as genuine.

The solution is to reformulate the loss function of the generator in the form:

() () ()() ()(), logG G D
z zθ θ =−EL D G (Equation 4.1.5)

Chapter 4

[105]

The loss function simply maximizes the chance of the discriminator into believing
that the synthetic data is real by training the generator. The new formulation is no
longer zero-sum and is purely heuristics-driven. Figure 4.1.4 shows the generator
during training. In this figure, the generator parameters are only updated when
the whole adversarial network is trained. This is because the gradients are
passed down from the discriminator to the generator. However, in practice, the
discriminator weights are only temporarily frozen during adversarial training.

In deep learning, both the generator and discriminator can be implemented using
a suitable neural network architecture. If the data or signal is an image, both the
generator and discriminator networks will use a CNN. For single-dimensional
sequences like in NLP, both networks are usually recurrent (RNN, LSTM or GRU).

GAN implementation in Keras
In the previous section, we learned that the principles behind GANs are
straightforward. We also learned how GANs could be implemented by familiar
network layers such as CNNs and RNNs. What differentiates GANs from other
networks is they are notoriously difficult to train. Something as simple as a minor
change in the layers can drive the network to training instability.

In this section, we'll examine one of the early successful implementations
of GANs using deep CNNs. It is called DCGAN [3].

Figure 4.2.1 shows DCGAN that is used to generate fake MNIST images.
DCGAN recommends the following design principles:

•	 Use of strides > 1 convolution instead of MaxPooling2D or UpSampling2D.
With strides > 1, the CNN learns how to resize the feature maps.

•	 Avoid using Dense layers. Use CNN in all layers. The Dense layer is utilized
only as the first layer of the generator to accept the z-vector. The output of the
Dense layer is resized and becomes the input of the succeeding CNN layers.

•	 Use of Batch Normalization (BN) to stabilize learning by normalizing
the input to each layer to have zero mean and unit variance. No BN
in the generator output layer and discriminator input layer. In the
implementation example to be presented here, no batch normalization
is used in the discriminator.

•	 Rectified Linear Unit (ReLU) is used in all layers of the generator except in
the output layer where the tanh activation is utilized. In the implementation
example to be presented here, sigmoid is used instead of tanh in the output
of the generator since it generally results in a more stable training for
MNIST digits.

Generative Adversarial Networks (GANs)

[106]

•	 Use of Leaky ReLU in all layers of the discriminator. Unlike ReLU, instead of
zeroing out all outputs when the input is less than zero, Leaky ReLU generates
a small gradient equal to alpha × input. In the following example, alpha = 0.2.

Figure 4.2.1: A DCGAN model

The generator learns to generate fake images from 100-dim input vectors ([-1.0, 1.0]
range 100-dim random noise with uniform distribution). The discriminator classifies
real from fake images but inadvertently coaches the generator how to generate real
images when the adversarial network is trained. The kernel size used in our DCGAN
implementation is 5, this is to allow it to increase the coverage and expressive power
of the convolution.

The generator accepts the 100-dim z-vector generated by a uniform distribution
with a range of -1.0 to 1.0. The first layer of the generator is a 7 × 7 ×128 = 6,272 -
unit Dense layer. The number of units is computed based on the intended ultimate
dimensions of the output image (28 × 28 × 1, 28 is a multiple of 7) and the number
of filters of the first Conv2DTranspose, which is equal to 128. We can imagine
transposed CNNs (Conv2DTranspose) as the reversed process of CNN. In a
simple example, if a CNN converts an image to feature maps, a transposed CNN
will produce an image given feature maps. Hence, transposed CNNs were used
in the decoder in the previous chapter and here on generators.

Chapter 4

[107]

After undergoing two Conv2DTranspose with strides = 2, the feature maps
will have a size of 28 × 28 × number of filters. Each Conv2DTranspose is preceded
by batch normalization and ReLU. The final layer has sigmoid activation that
generates the 28 × 28 × 1 fake MNIST images. Each pixel is normalized to
[0.0, 1.0] corresponding to [0, 255] grayscale levels. Following listing shows the
implementation of the generator network in Keras. A function is defined to build
the generator model. Due to the length of the entire code, we will limit the listing
to the particular lines being discussed.

The complete code is available on GitHub: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

Listing 4.2.1, dcgan-mnist-4.2.1.py shows us the generator network builder
function for DCGAN:

def build_generator(inputs, image_size):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 # Arguments
 inputs (Layer): Input layer of the generator (the z-vector)
 image_size: Target size of one side (assuming square image)

 # Returns
 Model: Generator Model
 """

 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Generative Adversarial Networks (GANs)

[108]

 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Activation('sigmoid')(x)
 generator = Model(inputs, x, name='generator')
 return generator

The discriminator is similar to many CNN-based classifiers. The input is a 28 × 28 × 1
MNIST image that is classified as either real (1.0) or fake (0.0). There are four CNN
layers. Except for the last convolution, each Conv2D uses strides = 2 to down
sample the feature maps by two. Each Conv2D is then preceded by a Leaky ReLU
layer. The final filter size is 256, while the initial filter size is 32 and doubles every
convolution layer. The final filter size of 128 also works. However, we'll find that
the generated images look better with 256. The final output layer is flattened, and
a single unit Dense layer generates the prediction between 0.0 to 1.0 after scaling
by the sigmoid activation layer. The output is modeled as a Bernoulli distribution.
Hence, the binary cross-entropy loss function is used.

After building the generator and discriminator models, the adversarial model is
made by concatenating the generator and discriminator networks. Both discriminator
and adversarial networks use the RMSprop optimizer. The learning rate for the
discriminator is 2e-4 while for the adversarial network, it is 1e-4. RMSprop decay
rates of 6e-8 for discriminator and 3e-8 for the adversarial network are applied.
Setting the learning rate of the adversarial equal to half of the discriminator
will result in a more stable training. We'll recall from Figure 4.1.3 and 4.1.4, that
the GAN training has two parts: discriminator training and generator training,
which is adversarial training, with discriminator weights frozen.

Listing 4.2.2 shows the implementation of the discriminator in Keras. A function
is defined to build the discriminator model. In Listing 4.2.3, we'll illustrate how to
build GAN models. Firstly, the discriminator model is built and following on from
that the generator model is instantiated. The adversarial model is just the generator
and the discriminator put together. Across many GANs, the batch size of 64 appears
to be the most common. The network parameters are shown in Listing 4.2.3.

Chapter 4

[109]

As can be seen in Listing 4.2.1 and 4.2.2, the DCGAN models are straightforward.
What makes it difficult to build is small changes in the network design can easily
break the training convergence. For example, if batch normalization is used in the
discriminator or if strides = 2 in the generator is transferred to the latter CNN
layers, DCGAN will fail to converge.

Listing 4.2.2, dcgan-mnist-4.2.1.py shows us the discriminator network builder
function for DCGAN:

def build_discriminator(inputs):
 """Build a Discriminator Model

 Stack of LeakyReLU-Conv2D to discriminate real from fake.
 The network does not converge with BN so it is not used here
 unlike in [1] or original paper.

 # Arguments
 inputs (Layer): Input layer of the discriminator (the image)

 # Returns
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 x = Dense(1)(x)
 x = Activation('sigmoid')(x)
 discriminator = Model(inputs, x, name='discriminator')
 return discriminator

Generative Adversarial Networks (GANs)

[110]

Listing 4.2.3, dcgan-mnist-4.2.1.py: Function to build DCGAN models and call
the training routine:

def build_and_train_models():
 # load MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 model_name = "dcgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 discriminator = build_discriminator(inputs)
 # [1] or original paper uses Adam,
 # but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 discriminator.compile(loss='binary_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = build_generator(inputs, image_size)
 generator.summary()

 # build adversarial model
 optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
 # freeze the weights of discriminator
 # during adversarial training

Chapter 4

[111]

 discriminator.trainable = False
 # adversarial = generator + discriminator
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 adversarial.compile(loss='binary_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 params = (batch_size, latent_size, train_steps, model_name)
 train(models, x_train, params)

Listing 4.2.4 shows the function dedicated to training the discriminator and
adversarial networks. Due to custom training, the usual fit() function is not going
to be used. Instead, train_on_batch() is called up to run a single gradient update
for the given batch of data. The generator is then trained via an adversarial network.
The training first randomly picks a batch of real images from the dataset. This is
labeled as real (1.0). Then a batch of fake images will be generated by the generator.
This is labeled as fake (0.0). The two batches are concatenated and are used to train
the discriminator.

After this is completed, a new batch of fake images will be generated by the
generator and labeled as real (1.0). This batch will be used to train the adversarial
network. The two networks are trained alternately for about 40,000 steps. At regular
intervals, the generated MNIST digits based on a certain noise vector are saved on
the filesystem. At the last training step, the network has converged. The generator
model is also saved on a file so we can easily reuse the trained model for future
MNIST digits generation. However, only the generator model is saved since that
is the useful part of GANs in the generation of new MNIST digits. For example,
we can generate new and random MNIST digits by executing:

python3 dcgan-mnist-4.2.1.py --generator=dcgan_mnist.h5

Listing 4.2.4, dcgan-mnist-4.2.1.py shows us the function to train the
discriminator and adversarial networks:

def train(models, x_train, params):
 """Train the Discriminator and Adversarial Networks

 Alternately train Discriminaor and Adversarial networks by batch.
 Discriminator is trained first with properly real and fake images.
 Adversarial is trained next with fake images pretending to be real
 Generate sample images per save_interval.

Generative Adversarial Networks (GANs)

[112]

 # Arguments
 models (list): Generator, Discriminator, Adversarial models
 x_train (tensor): Train images
 params (list) : Networks parameters

 """
 # the GAN models
 generator, discriminator, adversarial = models
 # network parameters
 batch_size, latent_size, train_steps, model_name = params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output evolves
 # during training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
 # number of elements in train dataset
 train_size = x_train.shape[0]
 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0, train_size, size=batch_
size)
 real_images = x_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
 # generate fake images
 fake_images = generator.predict(noise)
 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0.0
 # train discriminator network, log the loss and accuracy
 loss, acc = discriminator.train_on_batch(x, y)
 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0
 # since the discriminator weights are frozen in adversarial
network

Chapter 4

[113]

 # only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
 # label fake images as real or 1.0
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input of the
adversarial
 # for classification
 # log the loss and accuracy
 loss, acc = adversarial.train_on_batch(noise, y)
 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False

 # plot generator images on a periodic basis
 plot_images(generator,
 noise_input=noise_input,
 show=show,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for future MNIST digit
generation
 generator.save(model_name + ".h5")

Figure 4.2.1 shows the evolution of fake images from the generator as a function
of training steps. At 5,000 steps, the generator is already producing recognizable
images. It's very much like having an agent that knows how to draw digits. It's worth
noting that some digits change from one recognizable form (for example, 8 on the 2nd
column of the last row) to another (for example, 0). When the training converges, the
discriminator loss reaches near 0.5 while the adversarial loss approaches near 1.0 as
follows:

39997: [discriminator loss: 0.423329, acc: 0.796875] [adversarial loss:
0.819355, acc: 0.484375]

39998: [discriminator loss: 0.471747, acc: 0.773438] [adversarial loss:
1.570030, acc: 0.203125]

Generative Adversarial Networks (GANs)

[114]

39999: [discriminator loss: 0.532917, acc: 0.742188] [adversarial loss:
0.824350, acc: 0.453125]

Figure 4.2.2: The fake images generated by the DCGAN generator at different training steps

Conditional GAN
In the previous section, the fake images generated by the DCGAN are random.
There is no control over which specific digits will be produced by the generator. There
is no mechanism for how to request a particular digit from the generator. This problem
can be addressed by a variation of GAN called Conditional GAN (CGAN) [4].

Using the same GAN, a condition is imposed on both the generator and
discriminator inputs. The condition is in the form of a one-hot vector version
of the digit. This is associated with the image to produce (generator) or classified
as real or fake (discriminator). The CGAN model is shown in Figure 4.3.1.

Chapter 4

[115]

CGAN is similar to DCGAN except for the additional one-hot vector input. For the
generator, the one-hot label is concatenated with the latent vector before the Dense
layer. For the discriminator, a new Dense layer is added. The new layer is used to
process the one-hot vector and reshape it so that it is suitable for concatenation to
the other input of the succeeding CNN layer:

Figure 4.3.1: The CGAN model is similar to DCGAN except for the one-hot vector, which is used to condition
the generator and discriminator outputs

Generative Adversarial Networks (GANs)

[116]

The generator learns to generate fake images from a 100-dim input vector and
a specified digit. The discriminator classifies real from fake images based on real
and fake images and their corresponding labels.

The basis of CGAN is still the same as the original GAN principle except that
the discriminator and generator inputs are conditioned on one-hot labels, y.
By incorporating this condition in Equations 4.1.1 and 4.1.5, the loss functions for
the discriminator and generator are shown in Equations 4.3.1 and 4.3.2 respectively.

Given Figure 4.3.2, it may be more appropriate to write the loss functions as:

() () ()() () ()()()~, log | log 1 | |
data

D G D
x p zx y z y yθ θ ′ ′=− − −E EL D D G

and
() () ()() ()(), log | |G G D

z z y yθ θ ′ ′=−EL D G
.

() () ()() () ()()()~, log | log 1 |
data

D G D
x p zx y z yθ θ ′=− − −E EL D D G (Equation 4.3.1)

() () ()() ()(), log |G G D
z D z yθ θ ′=−EL G (Equation 4.3.2)

The new loss function of the discriminator aims to minimize the error of predicting
real images coming from the dataset and fake images coming from the generator
given their one-hot labels. Figure 4.3.2 shows how to train the discriminator.

Figure 4.3.2: Training the CGAN discriminator is similar to training the GAN discriminator.
The only difference is both the generated fake and the dataset's real images are conditioned

with their corresponding one-hot labels.

Chapter 4

[117]

The new loss function of the generator minimizes the correct prediction of the
discriminator on fake images conditioned on the specified one-hot labels. The
generator learns how to generate the specific MNIST digit given its one-hot
vector that can fool the discriminator. The following figure shows how to train
the generator:

Figure 4.3.3: Training the CGAN generator through the adversarial network is similar to training
GAN generator. The only difference is the generated fake images are conditioned with one-hot labels.

Following listing highlights the minor changes needed in the discriminator model.
The code processes the one-hot vector using a Dense layer and concatenates it with the
image input. The Model instance is modified for the image and one-hot vector inputs.

Listing 4.3.1, cgan-mnist-4.3.1.py shows us the CGAN discriminator. In highlight
are the changes made in DCGAN.

def build_discriminator(inputs, y_labels, image_size):
 """Build a Discriminator Model

 Inputs are concatenated after Dense layer.
 Stack of LeakyReLU-Conv2D to discriminate real from fake.
 The network does not converge with BN so it is not used here
 unlike in DCGAN paper.

 # Arguments
 inputs (Layer): Input layer of the discriminator (the image)
 y_labels (Layer): Input layer for one-hot vector to condition
 the inputs
 image_size: Target size of one side (assuming square image)

Generative Adversarial Networks (GANs)

[118]

 # Returns
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs

 y = Dense(image_size * image_size)(y_labels)
 y = Reshape((image_size, image_size, 1))(y)
 x = concatenate([x, y])

 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 x = Dense(1)(x)
 x = Activation('sigmoid')(x)
 # input is conditioned by y_labels
 discriminator = Model([inputs, y_labels],
 x,
 name='discriminator')
 return discriminator

Following listing highlights the code changes to incorporate the conditioning one-
hot labels in the generator builder function. The Model instance is modified for the
z-vector and one-hot vector inputs.

Listing 4.3.2, cgan-mnist-4.3.1.py shows us the CGAN generator. In highlight
are the changes made in DCGAN:

def build_generator(inputs, y_labels, image_size):
 """Build a Generator Model

Chapter 4

[119]

 Inputs are concatenated before Dense layer.
 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in orig DCGAN.
 Sigmoid converges easily.

 # Arguments
 inputs (Layer): Input layer of the generator (the z-vector)
 y_labels (Layer): Input layer for one-hot vector to condition
 the inputs
 image_size: Target size of one side (assuming square image)

 # Returns
 Model: Generator Model
 """
 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 x = concatenate([inputs, y_labels], axis=1)
 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Activation('sigmoid')(x)
 # input is conditioned by y_labels
 generator = Model([inputs, y_labels], x, name='generator')
 return generator

Generative Adversarial Networks (GANs)

[120]

Listing 4.3.3 highlights the changes made in the train() function to accommodate
the conditioning one-hot vector for the discriminator and the generator. The CGAN
discriminator is firstly trained with one batch of real and fake data conditioned
on their respective one-hot labels. Then, the generator parameters are updated
by training the adversarial network given one-hot label conditioned fake data
pretending to be real. Similar to DCGAN, the discriminator weights are frozen
during adversarial training.

Listing 4.3.3, cgan-mnist-4.3.1.py shows us the CGAN training. In highlight
are the changes made in DCGAN:

def train(models, data, params):
 """Train the Discriminator and Adversarial Networks

 Alternately train Discriminator and Adversarial networks by batch.
 Discriminator is trained first with properly labelled real and
fake images.
 Adversarial is trained next with fake images pretending to be
real.
 Discriminator inputs are conditioned by train labels for real
images,
 and random labels for fake images.
 Adversarial inputs are conditioned by random labels.
 Generate sample images per save_interval.

 # Arguments
 models (list): Generator, Discriminator, Adversarial models
 data (list): x_train, y_train data
 params (list): Network parameters

 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name =
params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output evolves during
training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
 # one-hot label the noise will be conditioned to

Chapter 4

[121]

 noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 # number of elements in train dataset
 train_size = x_train.shape[0]

 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_class, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0, train_size,
size=batch_size)
 real_images = x_train[rand_indexes]
 # corresponding one-hot labels of real images
 real_labels = y_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size,
latent_size])
 # assign random one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]

 # generate fake images conditioned on fake labels
 fake_images = generator.predict([noise, fake_labels])
 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 # real + fake one-hot labels = 1 batch of train one-hot labels
 y_labels = np.concatenate((real_labels, fake_labels))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0.0
 # train discriminator network, log the loss and accuracy
 loss, acc = discriminator.train_on_batch([x, y_labels], y)
 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

 # train the adversarial network for 1 batch
 # 1 batch of fake images conditioned on fake 1-hot labels
w/ label=1.0
 # since the discriminator weights are frozen in adversarial
network

Generative Adversarial Networks (GANs)

[122]

 # only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size,
latent_size])
 # assign random one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice
(num_labels,batch_size)]
 # label fake images as real or 1.0
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input of the
adversarial
 # for classification
 # log the loss and accuracy
 loss, acc = adversarial.train_on_batch([noise, fake_labels],
y)
 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False

 # plot generator images on a periodic basis
 plot_images(generator,
 noise_input=noise_input,
 noise_class=noise_class,
 show=show,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

Figure 4.3.4 shows the evolution of MNIST digits generated when the generator is
conditioned to produce digits with the following labels:

[0 1 2 3
 4 5 6 7
 8 9 0 1
 2 3 4 5]

Chapter 4

[123]

Figure 4.3.4: The fake images generated by CGAN at different training steps when
conditioned with labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

You're encouraged to run the trained generator model to see new synthesized
MNIST digits images:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5

Alternatively, a specific digit (for example, 8) to be generated can also be requested:

cgan-mnist-4.3.1.py --generator=cgan_mnist.h5 --digit=8

With CGAN it's like having an agent that we can ask to draw digits similar
to how humans write digits. The key advantage of CGAN over DCGAN is that
we can specify which digit we want the agent to draw.

Generative Adversarial Networks (GANs)

[124]

Conclusion
This chapter discussed the general principles behind GANs, to give you a foundation
to the more advanced topics we'll now move on to, including Improved GANs,
Disentangled Representations GANs, and Cross-Doman GANs. We started this
chapter by understanding how GANs are made up of two networks called generator
and discriminator. The role of the discriminator is to discriminate between real
and fake signals. The aim of the generator is to fool the discriminator. The generator
is normally combined with the discriminator to form an adversarial network. It is
through training the adversarial network that the generator learns how to produce
fake signals that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train.
Two example implementations in Keras were presented. DCGAN demonstrated
that it is possible to train GANs to generate fake images using deep CNNs. The
fake images are MNIST digits. However, the DCGAN generator has no control over
which specific digit it should draw. CGAN addressed this problem by conditioning
the generator to draw a specific digit. The condition is in the form of a one-hot label.
CGAN is useful if we want to build an agent that can generate data of a specific class.

In the next chapter, improvements on the DCGAN and CGAN will be introduced.
In particular, the focus is on how to stabilize the training of DCGAN and how to
improve the perceptive quality of CGAN. This will be done by introducing new
loss functions and slightly different model architectures.

References
1.	 Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv

preprint arXiv:1701.00160, 2016 (https://arxiv.org/pdf/1701.00160.
pdf).

2.	 Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. arXiv
preprint arXiv:1511.06434, 2015 (https://arxiv.org/pdf/1511.06434.
pdf).

3.	 Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
arXiv preprint arXiv:1411.1784, 2014 (https://arxiv.org/pdf/1411.1784.
pdf).

4.	 Tero Karras and others. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. ICLR, 2018 (https://arxiv.org/pdf/1710.10196.
pdf).

https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1710.10196.pdf

[125]

Improved GANs
Since the introduction of the Generative Adversarial Networks (GANs) in 2014[1],
its popularity has rapidly increased. GANs have proved to be a useful generative
model that can synthesize new data that look real. Many of the research papers
in deep learning that followed, proposed measures to address the difficulties
and limitations of the original GAN.

As we discussed in previous chapters, GANs can be notoriously difficult to train
and prone to mode collapse. Mode collapse is a situation where the generator is
producing outputs that look the same even though the loss functions are already
optimized. In the context of MNIST digits, with mode collapse, the generator
may only be producing digits 4 and 9 since they look similar. Wasserstein GAN
(WGAN)[2] addressed these problems by arguing that stable training and mode
collapse can be avoided by simply replacing the GAN loss function based on
Wasserstein 1 or Earth-Mover distance (EMD).

However, the issue of stability is not the only problem of GANs. There is also
the increasing need to improve the perceptive quality of the generated images.
Least Squares GAN (LSGAN)[3] proposed to address both these problems
simultaneously. The basic premise is that sigmoid cross entropy loss leads to
a vanishing gradient during training. This results in poor image quality. Least
squares loss does not induce vanishing gradients. The resulting generated images
are of higher perceptive quality when compared to vanilla GAN generated images.

In the previous chapter, CGAN introduced a method for conditioning the output
of the generator. For example, if we wanted to get digit 8, we would include the
conditioning label in the input to the generator. Inspired by CGAN, the Auxiliary
Classifier GAN (ACGAN)[4] proposed a modified conditional algorithm that
results in better perceptive quality and diversity of the outputs.

Improved GANs

[126]

In summary, the goal of this chapter is to introduce these improved GANs and
to present:

•	 The theoretical formulation of the WGAN
•	 An understanding of the principles of LSGAN
•	 An understanding of the principles of ACGAN
•	 Knowledge of how to implement improved GANs - WGAN, LSGAN, and

ACGAN using Keras

Wasserstein GAN
As we've mentioned before, GANs are notoriously hard to train. The opposing
objectives of the two networks, the discriminator and the generator, can easily
cause training instability. The discriminator attempts to correctly classify the
fake data from the real data. Meanwhile, the generator tries its best to trick the
discriminator. If the discriminator learns faster than the generator, the generator
parameters will fail to optimize. On the other hand, if the discriminator learns more
slowly, then the gradients may vanish before reaching the generator. In the worst
case, if the discriminator is unable to converge, the generator is not going to be able
to get any useful feedback.

Distance functions
The stability in training a GAN can be understood by examining its loss
functions. To better understand the GAN loss functions, we're going to review
the common distance or divergence functions between two probability distributions.
Our concern is the distance between pdata for true data distribution and pg for
generator data distribution. The goal of GANs is to make pg → pdata. Table 5.1.1
shows the divergence functions.

In most maximum likelihood tasks, we'll use Kullback-Leibler (KL) divergence or
DKL in the loss function as a measure of how far our neural network model prediction
is from the true distribution function. As shown in Equation 5.1.1, DKL is not
symmetric since () ()|| ||KL data g KL g dataD p p D p p≠ .

Jensen-Shannon (JS) or DJS is a divergence that is based on DKL. However, unlike
DKL, DJS is symmetrical and will be finite. In this section, we'll show that optimizing
the GAN loss functions is equivalent to optimizing DJS.

Chapter 5

[127]

Divergence Expression
Kullback-
Leibler (KL)
5.1.1

() ()
()~|| log data

KL data g x pdata
g

p x
D p p E

p x
=

() ()
()~|| log

g

data
KL g data x p

g

p x
D p p

p x
≠ = E

Jensen-
Shannon (JS)
5.1.2

() ()
() ()

()
() () ()~ ~

1 1log log
2 2

2 2

g

gdata
JS data g x pdata x p JS g data

data g data g

p xp x
D p p D p p

p x p x p x p x
= + =

+ +
E E

Earth-Mover
Distance
(EMD) or
Wasserstein 1
5.1.3

()
() (), ~,

, inf
data g

data g x yp p
W p p x yγγ∈∏

 = − E

where (),data gp p∏ is the set of all joint distributions y(x,y) whose
marginal are pdata and pg.

Table 5.1.1: The divergence functions between two probability distribution functions pdata and pg

Figure 5.1.1: The EMD is the weighted amount of mass from x to be transported
in order to match the target distribution, y

Improved GANs

[128]

The intuition behind EMD is that it is a measure of how much mass (),x yγ
should be transported by d = ||x - y|| for the probability distribution pdata
in order to match the probability distribution pg. (),x yγ is a joint distribution in
the space of all possible joint distributions (),data gp p∏ . (),x yγ is also known as
a transport plan to reflect the strategy for transporting masses to match the two
probability distributions. There are many possible transport plans given the two
probability distributions. Roughly speaking, inf indicates a transport plan with
the minimum cost.

For example, Figure 5.1.1 shows us two simple discrete distributions x and y . x
has masses mi for i = 1, 2, 3 and 4 at locations xi for i = 1, 2, 3 and 4. Meanwhile y
has masses mi for i =1 and 2 at locations yi for i = 1 and 2. To match the distribution
y , the arrows show the minimum transport plan to move each mass xi by di. The

EMD is computed as:

() () () ()4

1
0.2 0.4 0.3 0.5 0.1 0.3 0.4 0.7 0.54i ii

EMD x d
=

= = + + + =∑ (Equation 5.1.4)

In Figure 5.1.1, the EMD can be interpreted as the least amount of work needed to
move the pile of dirt x to fill the hole y . While in this example, the inf can also be
deduced from the figure, in most cases especially in continuous distributions, it is
intractable to exhaust all possible transport plans. We will come back to this problem
later on in this chapter. In the meantime, we'll show how the GAN loss functions are,
in fact, minimizing the Jensen-Shannon (JS) divergence.

Distance function in GANs
We're now going to compute the optimal discriminator given any generator from
the loss function in the previous chapter. We'll recall the following equation:

() () ()()()~ log log 1
data

D
x p zx z=− − −E EL D D G (Equation 4.1.1)

Instead of sampling from the noise distribution, the preceding equation can also
be expressed as sampling from the generator distribution:

() () ()()~ ~log log 1
data g

D
x p x px x=− − −E EL D D (Equation 5.1.5)

To find the minimum ()DL :

Chapter 5

[129]

() () () () ()()log log 1D
data g

x x

p x x dx p x x dx=− − −∫ ∫L D D (Equation 5.1.6)

() () () () ()()()log log 1D
data g

x

p x x p x D x dx=− + −∫L D (Equation 5.1.7)

The term inside the integral is in the form of y → a log y + b log(1 - y) which has
a known maximum value at

a
a b+ for []0,1y∈ , for any 2,a b∈R not including {0,0}.

Since the integral does not change the location of the maximum value (or the
minimum value of ()DL) for this expression, the optimal discriminator is:

() data

data g

px
p p

∗ =
+

D (Equation 5.1.8)

Consequently, the loss function is given the optimal discriminator:

()
~ ~log log 1

g

D data data
x pdata x p

data g data g

p pE
p p p p

∗   =− − −  + + 
EL (Equation 5.1.9)

()
~ ~log log

g

D gdata
x pdata x p

data g data g

pp
p p p p

∗   =− −  + + 
E EL (Equation 5.1.10)

() 2log 2
2 2

D data g data g
KL data KL g

p p p p
D p D p

∗    + +   = − −        
L (Equation 5.1.11)

() ()2log 2 2D
JS data gD p p

∗

= −L (Equation 5.1.12)

We can observe from Equation 5.1.12 that the loss function of the optimal
discriminator is a constant minus twice the Jensen-Shannon divergence between
the true distribution, pdata, and any generator distribution, pg. Minimizing ()D∗L
implies maximizing ()JS data gD p p or the discriminator must correctly classify
fake from real data.

Meanwhile, we can safely argue that the optimal generator is when the generator
distribution is equal to the true data distribution:

()* g datax p p→ =G (Equation 5.1.13)

Improved GANs

[130]

This makes sense since the objective of the generator is to fool the discriminator by
learning the true data distribution. Effectively, we can arrive at the optimal generator
by minimizing DJS, or by making pg → pdata. Given an optimal generator, the optimal
discriminator is with ()* 2 log 2 0.60= =DL .

Figure 5.1.2: An example of two distributions with no overlap. 0.5θ= for pg

The problem is that when the two distributions have no overlap, there's no smooth
function that will help to close the gap between them. Training the GANs will not
converge by gradient descent. For example, let's suppose:

pdata =(x, y) where ()0, ~ 0,1x y U= (Equation 5.1.14)

pg = (x, y) where (), ~ 0,1x y Uθ= (Equation 5.1.15)

As shown in Figure 5.1.2. U(0,1) is the uniform distribution. The divergence for each
distance function is as follows:

•	 () ()

()
(), ~ 0,1

, 1log 1log
, 0

g
KL g data x y U

data

p x y
D p p

p x yθ== = =+∞∑E

•	 () ()

()
(), ~ 0,1

, 1log 1log
, 0

g
KL g data x y U

data

p x y
D p p

p x yθ== = =+∞∑E

Chapter 5

[131]

•	 () ()
()

() () () () ()0, ~ 0,1 , ~ 0,1

,1 1 1 1 1 1log log 1log 1log log 21 1, , , ,2 2 2 2
2 22 2

gdata
JS data g x y U x y uU

data g data g

pp x y
D p p

p x y p x y p x y p x yθ= == + = + =
+ + ∑ ∑E E

•	 (),data gW p p θ=

Since DJS is a constant, the GAN will not have a sufficient gradient to drive pg → pdata.
We'll also find that DKL or reverse DKL is not helpful either. However, with W(pdata,pg)
we can have a smooth function in order to attain pg → pdata by gradient descent. EMD
or Wasserstein 1 seems to be a more logical loss function in order to optimize GANs
since DJS fails in situations when two distributions have minimal to no overlap.

For further understanding, an excellent discussion on distance functions can be
found at https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-
WGAN.html.

Use of Wasserstein loss
Before using EMD or Wasserstein 1, there is one more problem to overcome. It

is intractable to exhaust the space of (),data gp p∏ to find ()
inf

,data gp pγ ∈∏ . The proposed
solution is to use its Kantorovich-Rubinstein dual:

() () ()~ ~
1, sup

data gdata g x p x p
f L K

W p p f x f x
K ≤

   = −   E E (Equation 5.1.16)

Equivalently, EMD, 1
sup
f L≤ , is the supremum (roughly, maximum value) over

all the K-Lipschitz functions: :f x→ R . K-Lipschitz functions satisfy the constraint:

() ()1 2 1 2f x f x K x x− ≤ − (Equation 5.1.17)

For all 1 2,x x ∈R , the K-Lipschitz functions have bounded derivatives and almost
always continuously differentiable (for example, f(x), = |x| has bounded derivatives
and continuous but not differentiable at x = 0).

Equation 5.1.16 can be solved by finding a family of K-Lipschitz functions { }w w
f

∈W
:

() () ()~ ~, max
data gdata g x p w x p ww

W p p f x f x
∈

   = −   E E
W

 (Equation 5.1.18)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Improved GANs

[132]

In the context of GANs, Equation 5.1.18 can be rewritten by sampling from z-noise
distribution and replacing fw by the discriminator function, Dw:

() () ()()~, max
datadata g x p w z ww

W p p x z
∈

  = −     E E
W

D D G (Equation 5.1.19)

We use the bold letter to highlight the generality to multi-dimensional samples. The
final problem we face is how to find the family of functions w∈W . The proposed
solution we're going to go over is that at every gradient update, the weights of the
discriminator, w, are clipped between lower and upper bounds, (for example, -0.0,1
and 0.01):

(), 0.01,0.01w clip w← − (Equation 5.1.20)

The small values of w constrains the discriminator to a compact parameter space
thus ensuring Lipschitz continuity.

We can use Equation 5.1.19 as the basis of our new GAN loss functions. EMD
or Wasserstein 1 is the loss function that the generator aims to minimize, and the
cost function that the discriminator tries to maximize (or minimize -W(pdata,pg)):

() () ()()~ 5.1.21
data

D
x p w z wx z=− +E EL D D G (Equation 5.1.21)

() ()()G
z w z=−EL D G (Equation 5.1.22)

In the generator loss function, the first term disappears since it is not directly
optimizing with respect to the real data.

Following table shows the difference between the loss functions of GAN and
WGAN. For conciseness, we've simplified the notation for ()DL , and ()GL . These
loss functions are used in training the WGAN as shown in Algorithm 5.1.1. Figure
5.1.3 illustrates that the WGAN model is practically the same as the DCGAN model
except for the fake/true data labels and loss functions:

Network Loss Functions Equation
GAN () () ()()()~ log log 1

data

D
x p zx z=− − −E EL D D G

() ()()logG
z z=−EL D G

4.1.1

4.1.5

Chapter 5

[133]

WGAN () () ()()~ data

D
x p w z wx z=− +E EL D D G

() ()()G
z w z=−EL D G

(), 0.01,0.01w clip w← −

5.1.21

5.1.22

5.1.20

Table 5.1.1: A comparison between the loss functions of GAN and WGAN

Algorithm 5.1.1 WGAN

The values of the parameters are 0.00005α= , c = 0.01 m = 64, and ncritic = 5.

Require: a , the learning rate. c, the clipping parameter. m, the batch size. ncritic, the
number of the critic (discriminator) iterations per generator iteration.

Require: w0, initial critic (discriminator) parameters. 0θ , initial generator parameters

1.	 while θ has not converged do
2.	 for t = 1, …, ncritic do

3.	 Sample a batch (){ }
1
~

mi
datai

x p
=

 from the real data

4.	 Sample a batch (){ } ()
1
~

mi

i
z p z

=
 from the uniform noise distribution

5.	
()() ()()()1 1

1 1m mi i
w w w wi i
g x z

m m θ= =

 
 ←∇ − +
  
∑ ∑D D G , compute the

 discriminator gradients

6.	 (), ww w RMSProp w gα← − × , update the discriminator parameters

7.	 (), ,w clip w c c← − , clip discriminator weights
8.	 end for

9.	 Sample a batch (){ } ()
1
~

mi

i
z p z

=
 from the uniform noise distribution

10.	
()()()1

1 m i
wi

g z
mθ θ θ=

←−∇ ∑ D G , compute the generator gradients

11.	 (),RMSProp θθ θ α θ← − × G , update generator parameters
12.	 end while

Improved GANs

[134]

Figure 5.1.3: Top: Training the WGAN discriminator requires fake data from the generator and real data from the
true distribution. Bottom: Training the WGAN generator requires fake data from the generator pretending to be real.

Similar to GANs, WGAN alternately trains the discriminator and generator
(through adversarial). However, in WGAN, the discriminator (also called the critic)
trains ncritic iterations (Lines 2 to 8) before training the generator for one iteration
(Lines 9 to 11). This in contrast to GANs with an equal number of training iteration
for both discriminator and generator. Training the discriminator means learning the
parameters (weights and biases) of the discriminator. This requires sampling a batch
from the real data (Line 3) and a batch from the fake data (Line 4) and computing
the gradient of discriminator parameters (Line 5) after feeding the sampled data
to the discriminator network. The discriminator parameters are optimized using
RMSProp (Line 6). Both lines 5 and 6 are the optimization of Equation 5.1.21.
Adam was found to be unstable in WGAN.

Chapter 5

[135]

Lastly, the Lipschitz constraint in the EM distance optimization is imposed by
clipping the discriminator parameters (Line 7). Line 7 is the implementation of
Equation 5.1.20. After ncritic iterations of discriminator training, the discriminator
parameters are frozen. The generator training starts by sampling a batch of fake
data (Line 9). The sampled data is labeled as real (1.0) trying to fool the discriminator
network. The generator gradients are computed in Line 10 and optimized using
the RMSProp in Line 11. Lines 10 and 11 perform gradients update to optimize
Equation 5.1.22.

After training the generator, the discriminator parameters are unfrozen, and another
ncritic discriminator training iterations start. We should take note that there is no need
to freeze the generator parameters during discriminator training as the generator is
only involved in the fabrication of data. Similar to GANs, the discriminator can be
trained as a separate network. However, training the generator always requires the
participation of the discriminator through the adversarial network since the loss is
computed from the output of the generator network.

Unlike GAN, in WGAN real data are labeled 1.0 while fake data are labeled -1.0
as a workaround in computing the gradient in Line 5. Lines 5-6 and 10-11 perform
gradient update to optimize Equations 5.1.21 and 5.1.22 respectively. Each term in
Lines 5 and 10 is modelled as:

1

1 m

label prediction
i

y y
m =

=− ∑L (Equation 5.1.23)

Where ylabel = 1.0 for the real data and ylabel = -1.0 for the fake data. We removed the
superscript (i) for simplicity of the notation. For discriminator, WGAN increases

()prediction wy x=D to minimize the loss function when training using the real data.
When training using fake data, WGAN decreases ()()prediction wy z=D G to minimize the
loss function. For the generator, WGAN increases ()()prediction wy z=D G as to minimize
the loss function when the fake data is labeled as real during training. Note that ylabel
has no direct contribution in the loss function other than its sign. In Keras, Equation
5.1.23 is implemented as:

def wasserstein_loss(y_label, y_pred):
 return -K.mean(y_label * y_pred)

WGAN implementation using Keras
To implement WGAN within Keras, we can reuse the DCGAN implementation of
GANs, something we introduced in the previous chapter. The DCGAN builder and
utility functions are implemented in gan.py in lib folder as a module.

Improved GANs

[136]

The functions include:

•	 generator(): A generator model builder
•	 discriminator(): Discriminator model builder
•	 train(): DCGAN trainer
•	 plot_images(): Generic generator outputs plotter
•	 test_generator(): Generic generator test utility

As shown in Listing 5.1.1, we can build a discriminator by simply calling:

discriminator = gan.discriminator(inputs, activation='linear')

WGAN uses linear output activation. For the generator, we execute:

generator = gan.generator(inputs, image_size)

The overall network model in Keras is similar to the one seen in Figure 4.2.1
for DCGAN.

Listing 5.1.1 highlights the use of the RMSprop optimizer and Wasserstein loss
function. The hyper-parameters in Algorithm 5.1.1 are used during training. Listing
5.1.2 is the training function that closely follows the algorithm. However, there
is a minor tweak in the training of the discriminator. Instead of training the weights
in a single combined batch of both real and fake data, we'll train with one batch
of real data first and then a batch of fake data. This tweak will prevent the gradient
from vanishing because of the opposite sign in the label of real and fake data and
the small magnitude of weights due to clipping.

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Figure 5.1.4 shows the evolution of the WGAN outputs on MNIST dataset.

Listing 5.1.1, wgan-mnist-5.1.2.py. The WGAN model instantiation and training.
Both discriminator and generator use Wassertein 1 loss, wasserstein_loss():

def build_and_train_models():
 # load MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 5

[137]

 x_train = x_train.astype('float32') / 255

 model_name = "wgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100
 # hyper parameters from WGAN paper [2]
 n_critic = 5
 clip_value = 0.01
 batch_size = 64
 lr = 5e-5
 train_steps = 40000
 input_shape = (image_size, image_size, 1)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 # WGAN uses linear activation in paper [2]
 discriminator = gan.discriminator(inputs, activation='linear')
 optimizer = RMSprop(lr=lr)
 # WGAN discriminator uses wassertein loss
 discriminator.compile(loss=wasserstein_loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = gan.generator(inputs, image_size)
 generator.summary()

 # build adversarial model = generator + discriminator
 # freeze the weights of discriminator
 # during adversarial training
 discriminator.trainable = False
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 adversarial.compile(loss=wasserstein_loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks

Improved GANs

[138]

 models = (generator, discriminator, adversarial)
 params = (batch_size,
 latent_size,
 n_critic,
 clip_value,
 train_steps,
 model_name)
 train(models, x_train, params)

Listing 5.1.2, wgan-mnist-5.1.2.py. The training procedure for WGAN closely
follows Algorithm 5.1.1. The discriminator is trained ncritic iterations per 1 generator
training iteration:

def train(models, x_train, params):
 """Train the Discriminator and Adversarial Networks

 Alternately train Discriminator and Adversarial networks by batch.
 Discriminator is trained first with properly labeled real and fake
images
 for n_critic times.
 Discriminator weights are clipped as a requirement of Lipschitz
constraint.
 Generator is trained next (via Adversarial) with fake images
 pretending to be real.
 Generate sample images per save_interval

 # Arguments
 models (list): Generator, Discriminator, Adversarial models
 x_train (tensor): Train images
 params (list) : Networks parameters

 """
 # the GAN models
 generator, discriminator, adversarial = models
 # network parameters
 (batch_size, latent_size, n_critic,
 clip_value, train_steps, model_name) = params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output
 # evolves during training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16,
 latent_size])
 # number of elements in train dataset
 train_size = x_train.shape[0]

Chapter 5

[139]

 # labels for real data
 real_labels = np.ones((batch_size, 1))
 for i in range(train_steps):
 # train discriminator n_critic times
 loss = 0
 acc = 0
 for _ in range(n_critic):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and
 # fake images (label=-1.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0,
 train_size,
 size=batch_size)
 real_images = x_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size,
 latent_size])
 fake_images = generator.predict(noise)

 # train the discriminator network
 # real data label=1, fake data label=-1
 # instead of 1 combined batch of real and fake images,
 # train with 1 batch of real data first, then 1 batch
 # of fake images.
 # this tweak prevents the gradient from vanishing
 # due to opposite signs of real and
 # fake data labels (i.e. +1 and -1) and
 # small magnitude of weights due to clipping.
 real_loss, real_acc =
 discriminator.train_on_batch(real_images,
 real_labels)
 fake_loss, fake_acc =
 discriminator.train_on_batch(fake_images,
 real_labels)
 # accumulate average loss and accuracy
 loss += 0.5 * (real_loss + fake_loss)
 acc += 0.5 * (real_acc + fake_acc)

 # clip discriminator weights to satisfy
 # Lipschitz constraint

Improved GANs

[140]

 for layer in discriminator.layers:
 weights = layer.get_weights()
 weights = [np.clip(weight,
 -clip_value,
 clip_value) for weight in weights]
 layer.set_weights(weights)

 # average loss and accuracy per n_critic
 # training iterations
 loss /= n_critic
 acc /= n_critic
 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0
 # since the discriminator weights are
 # frozen in adversarial network
 # only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0, 1.0,
 size=[batch_size, latent_size])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input
 # of the adversarial for classification
 # fake images are labelled as real
 # log the loss and accuracy
 loss, acc = adversarial.train_on_batch(noise, real_labels)
 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False

 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 show=show,
 step=(i + 1),
 model_name=model_name)

Chapter 5

[141]

 # save the model after training the generator
 # the trained generator can be reloaded for future
 # MNIST digit generation
 generator.save(model_name + ".h5")

Figure 5.1.4: The sample outputs of WGAN vs. training steps.
WGAN does not suffer mode collapse in all the outputs during training and testing.

WGAN is stable even under network configuration changes. For example,
DCGAN is known to be unstable when batch normalization is inserted before
the ReLU in the discriminator network. The same configuration is stable in WGAN.

Improved GANs

[142]

Following figure shows us the outputs of both DCGAN and WGAN with batch
normalization on the discriminator network:

Figure 5.1.5: A comparison of the output of the DCGAN (Left) and WGAN (Right)
when batch normalization is inserted before the ReLU activation in the discriminator network

Similar to the GAN training in the previous chapter, the trained model is saved on
a file after 40,000 train steps. I would encourage you to run the trained generator
model to see new synthesized MNIST digits images:

python3 wgan-mnist-5.1.2.py --generator=wgan_mnist.h5

Least-squares GAN (LSGAN)
As discussed in the previous section, the original GAN is difficult to train.
The problem arises when the GAN optimizes its loss function; it's actually
optimizing the Jensen-Shannon divergence, DJS. It is difficult to optimize DJS
when there is little to no overlap between two distribution functions.

WGAN proposed to address the problem by using the EMD or Wasserstein
1 loss function which has a smooth differentiable function even when there is little
or no overlap between the two distributions. However, WGAN is not concerned
with the generated image quality. Apart from stability issues, there are still areas of
improvement in terms of perceptive quality in the generated images of the original
GAN. LSGAN theorizes that the twin problems can be solved simultaneously.

LSGAN proposes the least squares loss. Figure 5.2.1 demonstrates why the use of
a sigmoid cross entropy loss in the GAN results in poorly generated data quality.
Ideally, the fake samples distribution should be as close as possible to the true
samples' distribution. However, for GANs, once the fake samples are already
on the correct side of the decision boundary, the gradients vanish.

Chapter 5

[143]

This prevents the generator from having enough motivation to improve the quality
of the generated fake data. Fake samples far from the decision boundary will no
longer attempt to move closer to the true samples' distribution. Using the least
squares loss function, the gradients do not vanish as long as the fake samples
distribution is far from the real samples' distribution. The generator will strive
to improve its estimate of real density distribution even if the fake samples are
already on the correct side of the decision boundary:

Figure 5.2.1: Both real and fake samples distributions divided by respective decision boundaries:
Sigmoid and Least squares

Network Loss Functions Equation
GAN () () ()()()~ log log 1

data

D
x p zx z=− − −E EL D D G

() ()()logG
z z=−EL D G

4.1.1

4.1.5

LSGAN () ()() ()()2 2
~ 1

data

D
x p zx z= − +E EL D D G

() ()()()21G
z z= −EL D G

5.2.1

5.2.2

Table 5.2.1: A comparison between the loss functions of GAN and LSGAN

Improved GANs

[144]

The preceding table shows the comparison of the loss functions between GAN and
LSGAN. Minimizing Equation 5.2.1 or the discriminator loss function implies that
the MSE between real data classification and true label 1.0 should be close to zero.
In addition, the MSE between the fake data classification and the true label 0.0
should be close to zero.

Similar to GANs, the LSGAN discriminator is trained to classify real from fake
data samples. Minimizing Equation 5.2.2 means fooling the discriminator to think
that the generated fake sample data are real with label 1.0.

Implementing LSGAN using the DCGAN code in the previous chapter as the
basis requires few changes only. As shown in Listing 5.2.1, the discriminator
sigmoid activation is removed. The discriminator is built by calling:

discriminator = gan.discriminator(inputs, activation=None)

The generator is similar to the original DCGAN:

generator = gan.generator(inputs, image_size)

Both the discriminator and adversarial loss functions are replaced by mse. All the
network parameters are the same as in DCGAN. The network model of LSGAN
in Keras is similar to Figure 4.2.1 except that there is no linear or output activation.
The training process is similar to that seen in DCGAN and is provided by the utility
function:

gan.train(models, x_train, params)

Listing 5.2.1, lsgan-mnist-5.2.1.py shows how the discriminator and generator
are the same in DCGAN except for the discriminator output activation and the use
of MSE loss function:

def build_and_train_models():
 # MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 model_name = "lsgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100

Chapter 5

[145]

 input_shape = (image_size, image_size, 1)
 batch_size = 64
 lr = 2e-4
 decay = 6e-8
 train_steps = 40000

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 discriminator = gan.discriminator(inputs, activation=None)
 # [1] uses Adam, but discriminator converges
 # easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # LSGAN uses MSE loss [2]
 discriminator.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = gan.generator(inputs, image_size)
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 # freeze the weights of discriminator
 # during adversarial training
 discriminator.trainable = False
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 # LSGAN uses MSE loss [2]
 adversarial.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 params = (batch_size, latent_size, train_steps, model_name)
 gan.train(models, x_train, params)

Improved GANs

[146]

Following figure shows generated samples after training LSGAN using the MNIST
dataset for 40,000 training steps. The output images have better perceptual quality
compared to Figure 4.2.1 in DCGAN:

Figure 5.2.2: Sample outputs of LSGAN vs. training steps

I encourage you to run the trained generator model to see the new synthesized
MNIST digits images:

python3 lsgan-mnist-5.2.1.py --generator=lsgan_mnist.h5

Chapter 5

[147]

Auxiliary classifier GAN (ACGAN)
ACGAN is similar in principle to the Conditional GAN (CGAN) that we discussed
in the previous chapter. We're going to compare both CGAN and ACGAN. For both
CGAN and ACGAN, the generator inputs are noise and its label. The output is a fake
image belonging to the input class label. For CGAN, the inputs to the discriminator
are an image (fake or real) and its label. The output is the probability that the image
is real. For ACGAN, the input to the discriminator is an image, whilst the output is
the probability that the image is real and its class label. Following figure highlights
the difference between CGAN and ACGAN during generator training:

Figure 5.3.1: CGAN vs. ACGAN generator training.
The main difference is the input and output of the discriminator.

Improved GANs

[148]

Essentially, in CGAN we feed the network with side information (label). In ACGAN,
we try to reconstruct the side information using an auxiliary class decoder network.
ACGAN argued that forcing the network to do additional tasks is known to improve
the performance of the original task. In this case, the additional task is image
classification. The original task is the generation of fake images.

Network Loss Functions Number
CGAN () () ()()()~ log | log 1 |

data

D
x p zx y z y=− − −E EL D D D

() ()()log |G
z z y=−EL D G

4.3.1

4.3.2
ACGAN () () ()()() () ()()~ ~log log 1 | log | log | |

data data

D
x p z x p zx z y c x c z y=− − − − −E E E EL D D G P P G

() ()() ()()log | log | |G
z zz y c z y=− −E EL D G P G

5.3.1

5.3.2

Table 5.3.1: A comparison between the loss functions of CGAN and ACGAN

Preceding table shows the ACGAN loss functions as compared to CGAN.
The ACGAN loss functions are the same as CGAN except for the additional
classifier loss functions. Apart from the original task of identifying real from fake
images (() ()()()~ log | log 1 |

datax p zx y z y− − −E ED D G), Equation 5.3.1 of the discriminator
has the additional task of correctly classifying real and fake images
(() ()()~ log | log | |

datax p zc x c z y− −E EP P G). Equation 5.3.2 of the generator
means that apart from trying to fool the discriminator with fake images
(()()log |z z y−E D G), it is asking the discriminator to correctly classify those
fake images (()()log | |z c z y−E P G).

Starting with the CGAN code, only the discriminator and the training function are
modified to implement ACGAN. The discriminator and generator builder functions
are also provided by gan.py. To see the changes made on the discriminator,
following listing shows the builder function where the auxiliary decoder network
that performs image classification and the dual outputs are highlighted.

Listing 5.3.1, gan.py shows how the discriminator model builder is the same as
in DCGAN predicting if an image is real, the first output. An auxiliary decoder
network is added to perform the image classification and produce the second output:

def discriminator(inputs,
 activation='sigmoid',
 num_labels=None,
 num_codes=None):
 """Build a Discriminator Model

Chapter 5

[149]

 Stack of LeakyReLU-Conv2D to discriminate real from fake
 The network does not converge with BN so it is not used here
 unlike in [1]

 # Arguments
 inputs (Layer): Input layer of the discriminator (the image)
 activation (string): Name of output activation layer
 num_labels (int): Dimension of one-hot labels for ACGAN &
InfoGAN
 num_codes (int): num_codes-dim Q network as output
 if StackedGAN or 2 Q networks if InfoGAN

 # Returns
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 # default output is probability that the image is real
 outputs = Dense(1)(x)
 if activation is not None:
 print(activation)
 outputs = Activation(activation)(outputs)

 if num_labels:
 # ACGAN and InfoGAN have 2nd output
 # 2nd output is 10-dim one-hot vector of label

Improved GANs

[150]

 layer = Dense(layer_filters[-2])(x)
 labels = Dense(num_labels)(layer)
 labels = Activation('softmax', name='label')(labels)
 if num_codes is None:
 outputs = [outputs, labels]
 else:
 # InfoGAN have 3rd and 4th outputs
 # 3rd output is 1-dim continous Q of 1st c given x
 code1 = Dense(1)(layer)
 code1 = Activation('sigmoid', name='code1')(code1)

 # 4th output is 1-dim continuous Q of 2nd c given x
 code2 = Dense(1)(layer)
 code2 = Activation('sigmoid', name='code2')(code2)

 outputs = [outputs, labels, code1, code2]
 elif num_codes is not None:
 # z0_recon is reconstruction of z0 normal distribution
 z0_recon = Dense(num_codes)(x)
 z0_recon = Activation('tanh', name='z0')(z0_recon)
 outputs = [outputs, z0_recon]

 return Model(inputs, outputs, name='discriminator')

The discriminator is then built by calling:

discriminator = gan.discriminator(inputs, num_labels=num_labels)

The generator is the same as the one in ACGAN. To recall, the generator builder is
shown in the following listing. We should note that both Listings 5.3.1 and 5.3.2 are
the same builder functions used by WGAN and LSGAN in the previous sections.

Listing 5.3.2, gan.py shows the generator model builder is the same as in CGAN:

def generator(inputs,
 image_size,
 activation='sigmoid',
 labels=None,
 codes=None):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 # Arguments

Chapter 5

[151]

 inputs (Layer): Input layer of the generator (the z-vector)
 image_size (int): Target size of one side (assuming square
image)
 activation (string): Name of output activation layer
 labels (tensor): Input labels
 codes (list): 2-dim disentangled codes for InfoGAN

 # Returns
 Model: Generator Model
 """
 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 if labels is not None:
 if codes is None:
 # ACGAN labels
 # concatenate z noise vector and one-hot labels
 inputs = [inputs, labels]
 else:
 # infoGAN codes
 # concatenate z noise vector, one-hot labels
 # and codes 1 & 2
 inputs = [inputs, labels] + codes
 x = concatenate(inputs, axis=1)
 elif codes is not None:
 # generator 0 of StackedGAN
 inputs = [inputs, codes]
 x = concatenate(inputs, axis=1)
 else:
 # default input is just 100-dim noise (z-code)
 x = inputs

 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1

Improved GANs

[152]

 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 if activation is not None:
 x = Activation(activation)(x)

 # generator output is the synthesized image x
 return Model(inputs, x, name='generator')

In ACGAN, the generator is instantiated as:

generator = gan.generator(inputs, image_size, labels=labels)

Following figure shows the network model of ACGAN in Keras:

Figure 5.3.2: The Keras model of ACGAN

Chapter 5

[153]

As shown in Listing 5.3.3, the discriminator and adversarial models are modified
to accommodate the changes in the discriminator network. We now have two loss
functions. The first is the original binary cross-entropy to train the discriminator
in estimating the probability if the input image is real. The second is the image
classifier predicting the class label. The output is a one-hot vector of 10 dimensions.

Referring to Listing 5.3.3, acgan-mnist-5.3.1.py, where highlighted are the
changes implemented in the discriminator and adversarial models to accommodate
the image classifier of the discriminator network. The two loss functions correspond
to the two outputs of the discriminator:

def build_and_train_models():
 # load MNIST dataset
 (x_train, y_train), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 # train labels
 num_labels = len(np.unique(y_train))
 y_train = to_categorical(y_train)

 model_name = "acgan_mnist"
 # network parameters
 latent_size = 100
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)

 # build discriminator Model
 inputs = Input(shape=input_shape, name='discriminator_input')
 # call discriminator builder with 2 outputs,
 # pred source and labels
 discriminator = gan.discriminator(inputs, num_labels=num_labels)
 # [1] uses Adam, but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # 2 loss fuctions: 1) probability image is real
 # 2) class label of the image
 loss = ['binary_crossentropy', 'categorical_crossentropy']

Improved GANs

[154]

 discriminator.compile(loss=loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 labels = Input(shape=label_shape, name='labels')
 # call generator builder with input labels
 generator = gan.generator(inputs, image_size, labels=labels)
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 # freeze the weights of discriminator
 # during adversarial training
 discriminator.trainable = False
 adversarial = Model([inputs, labels],
 discriminator(generator([inputs, labels])),
 name=model_name)
 # same 2 loss fuctions: 1) probability image is real
 # 2) class label of the image
 adversarial.compile(loss=loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 data = (x_train, y_train)
 params = (batch_size, latent_size, train_steps, num_labels, model_
name)
 train(models, data, params)

In Listing 5.3.4, we highlight the changes implemented in the training routine. The
main difference compared to CGAN code is that the output label must be supplied
during discriminator and adversarial training.

As seen in Listing 5.3.4, acgan-mnist-5.3.1.py, the changes implemented in the
train function are highlighted:

def train(models, data, params):
 """Train the discriminator and adversarial Networks

Chapter 5

[155]

 Alternately train discriminator and adversarial networks by batch.
 Discriminator is trained first with real and fake images and
 corresponding one-hot labels.
 Adversarial is trained next with fake images pretending to be real
and
 corresponding one-hot labels.
 Generate sample images per save_interval.

 # Arguments
 models (list): Generator, Discriminator, Adversarial models
 data (list): x_train, y_train data
 params (list): Network parameters

 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and their one-hot labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name =
params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output
 # evolves during training
 noise_input = np.random.uniform(-1.0,
 1.0,
 size=[16, latent_size])
 # class labels are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5
 # the generator must produce these MNIST digits
 noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_label, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images and corresponding labels
 # from dataset
 rand_indexes = np.random.randint(0,
 train_size,

Improved GANs

[156]

 size=batch_size)
 real_images = x_train[rand_indexes]
 real_labels = y_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # randomly pick one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 # generate fake images
 fake_images = generator.predict([noise, fake_labels])
 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 # real + fake labels = 1 batch of train data labels
 labels = np.concatenate((real_labels, fake_labels))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0
 # train discriminator network, log the loss and accuracy
 # ['loss', 'activation_1_loss', 'label_loss',
 # 'activation_1_acc', 'label_acc']
 metrics = discriminator.train_on_batch(x, [y, labels])
 fmt = "%d: [disc loss: %f, srcloss: %f, lblloss: %f, srcacc:
%f, lblacc: %f]"
 log = fmt % (i, metrics[0], metrics[1], metrics[2],
metrics[3], metrics[4])

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0 and
 # corresponding one-hot label or class
 # since the discriminator weights are frozen
 # in adversarial network
 # only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # randomly pick one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,

Chapter 5

[157]

 batch_size)]
 # label fake images as real
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input
 # of the adversarial
 # for classification
 # log the loss and accuracy
 metrics = adversarial.train_on_batch([noise, fake_labels],
 [y, fake_labels])
 fmt = "%s [advr loss: %f, srcloss: %f, lblloss: %f, srcacc:
%f, lblacc: %f]"
 log = fmt % (log, metrics[0], metrics[1], metrics[2],
metrics[3], metrics[4])
 print(log)
 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False

 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 noise_label=noise_label,
 show=show,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

In turned out that with the additional task, the performance improvement in
ACGAN is significant compared to all GANs that we have discussed previously.
ACGAN training is stable as shown in Figure 5.3.3 sample outputs of ACGAN for
the following labels:

[0 1 2 3

 4 5 6 7

 8 9 0 1

 2 3 4 5]

Improved GANs

[158]

Unlike CGAN, the sample outputs appearance does not vary widely during training.
The MNIST digit image perceptive quality is also better. Figure 5.3.4 shows a side by
side comparison of every MNIST digit produced by both CGAN and ACGAN. Digits
2-6 are of better quality in ACGAN than in CGAN.

I encourage you to run the trained generator model to see new synthesized MNIST
digits images:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5

Alternatively, a specific digit (for example, 3) to be generated can also be requested:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5 --digit=3

Figure 5.3.3: The sample outputs generated by the ACGAN as a function of train steps
for labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

Chapter 5

[159]

Figure 5.3.4: A side by side comparison of outputs of CGAN and ACGAN conditioned with digits 0 to 9

Improved GANs

[160]

Conclusion
In this chapter, we've presented various improvements in the original algorithm
of GAN, first introduced in the previous chapter. WGAN proposed an algorithm
to improve the stability of training by using the EMD or Wassertein 1 loss. LSGAN
argued that the original cross-entropy function of GAN is prone to vanishing
gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable
training and quality outputs. ACGAN convincingly improved the quality of the
conditional generation of MNIST digits by requiring the discriminator to perform
classification task on top of determining whether the input image is fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs.
Whilst CGAN and ACGAN are able to indicate the desired digits to produce; we
have not analyzed GANs that can specify the attributes of outputs. For example,
we may want to control the writing style of the MNIST digits such as roundness,
tilt angle, and thickness. Therefore, the goal will be to introduce GANs with
disentangled representations to control the specific attributes of the generator
outputs.

References
1.	 Ian Goodfellow and others. Generative Adversarial Nets. Advances in

neural information processing systems, 2014(http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf).

2.	 Martin Arjovsky, Soumith Chintala, and Léon Bottou, Wasserstein GAN. arXiv
preprint, 2017(https://arxiv.org/pdf/1701.07875.pdf).

3.	 Xudong Mao and others. Least Squares Generative Adversarial Networks.
2017 IEEE International Conference on Computer Vision (ICCV). IEEE
2017(http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_
Least_Squares_Generative_ICCV_2017_paper.pdf).

4.	 Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image
Synthesis with Auxiliary Classifier GANs. ICML, 2017(http://proceedings.
mlr.press/v70/odena17a/odena17a.pdf).

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1701.07875.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://proceedings.mlr.press/v70/odena17a/odena17a.pdf
http://proceedings.mlr.press/v70/odena17a/odena17a.pdf

[161]

Disentangled
Representation GANs

As we've explored, GANs can generate meaningful outputs by learning the
data distribution. However, there was no control over the attributes of the outputs
generated. Some variations of GANs like Conditional GAN (CGAN) and Auxiliary
Classifier GAN (ACGAN), as discussed in the previous chapter are able to train
a generator that is conditioned to synthesize specific outputs. For example, both
CGAN and ACGAN can induce the generator to produce a specific MNIST digit.
This is achieved by using both a 100-dim noise code and the corresponding one-
hot label as inputs. However, other than the one-hot label, we have no other ways
to control the properties of generated outputs.

For a review on CGAN and ACGAN, please see Chapter 4, Generative
Adversarial Networks (GANs), and Chapter 5, Improved GANs.

In this chapter, we will be covering the variations of GANs that enable us to
modify the generator outputs. In the context of the MNIST dataset, apart from
which number to produce, we may find that we want to control the writing style.
This could involve the tilt or the width of the desired digit. In other words, GANs
can also learn disentangled latent codes or representations that we can use to vary
the attributes of the generator outputs. A disentangled code or representation is
a tensor that can change a specific feature or attribute of the output data while
not affecting the other attributes.

Disentangled Representation GANs

[162]

In the first section of this chapter, we will be discussing InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets [1],
an extension to GANs. InfoGAN learns the disentangled representations in an
unsupervised manner by maximizing the mutual information between the input
codes and the output observation. On the MNIST dataset, InfoGAN disentangles
the writing styles from digits dataset.

In the following part of the chapter, we'll also be discussing the Stacked Generative
Adversarial Networks or StackedGAN [2], another extension to GANs.
StackedGAN uses a pretrained encoder or classifier in order to aid in disentangling
the latent codes. StackedGAN can be viewed as a stack of models, with each being
made of an encoder and a GAN. Each GAN is trained in an adversarial manner by
using the input and output data of the corresponding encoder.

In summary, the goal of this chapter is to present:

•	 The concepts of disentangled representations
•	 The principles of both InfoGAN and StackedGAN
•	 Implementation of both InfoGAN and StackedGAN using Keras

Disentangled representations
The original GAN was able to generate meaningful outputs, but the downside
was that it couldn't be controlled. For example, if we trained a GAN to learn the
distribution of celebrity faces, the generator would produce new images of celebrity-
looking people. However, there is no way to influence the generator on the specific
attributes of the face that we want. For example, we're unable to ask the generator for
a face of a female celebrity with long black hair, a fair complexion, brown eyes, and
whose smiling. The fundamental reason for this is because the 100-dim noise code
that we use entangles all of the salient attributes of the generator outputs. We can
recall that in Keras, the 100-dim code was generated by random sampling of uniform
noise distribution:

generate 64 fake images from 64 x 100-dim uniform noise
noise = np.random.uniform(-1.0, 1.0, size=[64, 100])
fake_images = generator.predict(noise)

If we are able to modify the original GAN, such that we were able to separate the
code or representation into entangled and disentangled interpretable latent codes,
we would be able to tell the generator what to synthesize.

Chapter 6

[163]

Following figure shows us a GAN with an entangled code and its variation with
a mixture of entangled and disentangled representations. In the context of the
hypothetical celebrity face generation, with the disentangled codes, we are able to
indicate the gender, hairstyle, facial expression, skin complexion and eye color of
the face we wish to generate. The n–dim entangled code is still needed to represent
all the other facial attributes that we have not disentangled like the face shape,
facial hair, eye-glasses, as just three examples. The concatenation of entangled and
disentangled codes serves as the new input to the generator. The total dimension of
the concatenated code may not be necessarily 100:

Figure 6.1.1: The GAN with the entangled code and its variation with both entangled
and disentangled codes. This example is shown in the context of celebrity face generation.

Looking at preceding figure, it appears that GANs with disentangled representations
can also be optimized in the same way as a vanilla GAN can be. This is because
the generator output can be represented as:

() (),z c = zG G (Equation 6.1.1)

The code ()= ,z cz is made of two elements:

1.	 Incompressible entangled noise code similar to GANs z or noise vector.
2.	 Latent codes, c1,c2,…,cL, which represent the interpretable disentangled codes

of the data distribution. Collectively all latent codes are represented by c.

For simplicity, all the latent codes are assumed to be independent:

() ()1 2 1
, , , L

L ii
p c c c p c

=
=∏… (Equation 6.1.2)

The generator function () (),x z c= = zG G is provided with both the incompressible
noise code and the latent codes. From the point of view of the generator, optimizing

()= ,z cz is the same as optimizing z. The generator network will simply ignore
the constraint imposed by the disentangled codes when coming up with a solution.
The generator learns the distribution () ()|g gp x c p x= . This will practically defeat
the objective of disentangled representations.

Disentangled Representation GANs

[164]

InfoGAN
To enforce the disentanglement of codes, InfoGAN proposed a regularizer to the
original loss function that maximizes the mutual information between the latent
codes c and (),z cG :

()() ()(); , ;I c z c I c= zG G (Equation 6.1.3)

The regularizer forces the generator to consider the latent codes when it formulates
a function that synthesizes the fake images. In the field of information theory,
the mutual information between latent codes c and (),z cG is defined as:

()() () ()(); , | ,I c z c H c H c z c= −G G (Equation 6.1.4)

Where H(c) is the entropy of the latent code c and ()()| ,H c z cG is the conditional
entropy of c, after observing the output of the generator, (),z cG . Entropy
is a measure of uncertainty of a random variable or an event. For example,
information like, the sun rises in the east, has low entropy. Whereas, winning
the jackpot in the lottery has high entropy.

In Equation 6.1.4, maximizing the mutual information means minimizing
()()| ,H c z cG or decreasing the uncertainty in the latent code upon observing the

generated output. This makes sense since, for example, in the MNIST dataset, the
generator becomes more confident in synthesizing the digit 8 if the GAN sees that
it observed the digit 8.

However, it is hard to estimate ()()| ,H c z cG since it requires knowledge of the
posterior ()() ()| , |P c z c P c x=G , which is something that we don't have access to. The
workaround is to estimate the lower bound of mutual information by estimating the
posterior with an auxiliary distribution Q(c|x). InfoGAN estimates the lower bound
of mutual information as:

()() () () () () (), ,; , , log |I c P c x z cI c z c L Q E Q c x H c≥ = +  ∼ ∼GG G (Equation 6.1.5)

In InfoGAN, H(c) is assumed to be a constant. Therefore, maximizing the mutual
information is a matter of maximizing the expectation. The generator must be
confident that it has generated an output with the specific attributes. We should
note that the maximum value of this expectation is zero. Therefore, the maximum
of the lower bound of the mutual information is H(c). In InfoGAN, Q(c|x) for
discrete latent codes can be represented by softmax nonlinearity. The expectation
is the negative categorical_crossentropy loss in Keras.

Chapter 6

[165]

For continuous codes of a single dimension, the expectation is a double integral
over c and x. This is due to the expectation that samples from both disentangled
code distribution and generator distribution. One way of estimating the expectation
is by assuming the samples as a good measure of continuous data. Therefore, the loss
is estimated as c log Q(c|x).

To complete the network of InfoGAN, we should have an implementation of Q(c|x).
For simplicity, the network Q is an auxiliary network attached to the second to last
layer of the discriminator. Therefore, this has a minimal impact on the training of the
original GAN. Following figure shows InfoGAN network diagram:

Figure 6.1.2: A network diagram showing the discriminator and generator training in InfoGAN

Disentangled Representation GANs

[166]

Following table shows the loss functions of InfoGAN as compared to the original
GAN. The loss functions of InfoGAN differ from the original GAN by an additional
term ()(); ,I c z cλ− G where λ is a small positive constant. Minimizing the loss
function of InfoGAN translates to minimizing the loss of the original GAN and
maximizing the mutual information ()(); ,I c z cG .

Network Loss Functions Number
GAN () () ()()()log log 1

data

D
x p z= − − − z∼E EL D D Gx

() ()()logG
z= − zEL D G

4.1.1

4.1.5

InfoGAN () () ()()() ()(),log log 1 , ; ,
data

D
x p z c z c I c z cλ= − − − −∼E EL D D G Gx

() ()() ()(), log , ; ,G
z c z c I c z cλ= − −EL D G G

For continuous codes, InfoGAN recommends a value of 1λ < . In our
example, we set 0.5λ = . For discrete codes, InfoGAN recommends

1λ = .

6.1.1

6.1.2

Table 6.1.1: A comparison between the loss functions of GAN and InfoGAN

If applied on the MNIST dataset, InfoGAN can learn the disentangled discrete and
continuous codes in order to modify the generator output attributes. For example,
like CGAN and ACGAN, the discrete code in the form of a 10-dim one-hot label will
be used to specify the digit to generate. However, we can add two continuous codes,
one for controlling the angle of writing style and another for adjusting the stroke
width. Following figure shows the codes for the MNIST digit in InfoGAN. We retain
the entangled code with a smaller dimensionality to represent all other attributes:

Figure 6.1.3: The codes for both GAN and InfoGAN in the context of MNIST dataset

Chapter 6

[167]

Implementation of InfoGAN in Keras
To implement InfoGAN on MNIST dataset, there are some changes that need to be
made in the base code of ACGAN. As highlighted in following listing, the generator
concatenates both entangled (z noise code) and disentangled codes (one-hot label
and continuous codes) to serve as input. The builder functions for the generator
and discriminator are also implemented in gan.py in the lib folder.

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Listing 6.1.1, infogan-mnist-6.1.1.py shows us how the InfoGAN generator
concatenates both entangled and disentangled codes to serve as input:

def generator(inputs,
 image_size,
 activation='sigmoid',
 labels=None,
 codes=None):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 # Arguments
 inputs (Layer): Input layer of the generator (the z-vector)
 image_size (int): Target size of one side (assuming square
image)
 activation (string): Name of output activation layer
 labels (tensor): Input labels
 codes (list): 2-dim disentangled codes for InfoGAN

 # Returns
 Model: Generator Model
 """
 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 if labels is not None:
 if codes is None:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Disentangled Representation GANs

[168]

 # ACGAN labels
 # concatenate z noise vector and one-hot labels
 inputs = [inputs, labels]
 else:
 # infoGAN codes
 # concatenate z noise vector, one-hot labels,
 # and codes 1 & 2
 inputs = [inputs, labels] + codes
 x = concatenate(inputs, axis=1)
 elif codes is not None:
 # generator 0 of StackedGAN
 inputs = [inputs, codes]
 x = concatenate(inputs, axis=1)
 else:
 # default input is just 100-dim noise (z-code)
 x = inputs

 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 if activation is not None:
 x = Activation(activation)(x)

 # generator output is the synthesized image x
 return Model(inputs, x, name='generator')

The preceding listing shows the discriminator and Q-Network with the original
default GAN output. The three auxiliary outputs corresponding to discrete code
(for one-hot label) softmax prediction and the continuous codes probabilities
given the input MNIST digit image are highlighted.

Chapter 6

[169]

Listing 6.1.2, infogan-mnist-6.1.1.py. InfoGAN discriminator and Q-Network:

def discriminator(inputs,
 activation='sigmoid',
 num_labels=None,
 num_codes=None):
 """Build a Discriminator Model

 Stack of LeakyReLU-Conv2D to discriminate real from fake
 The network does not converge with BN so it is not used here
 unlike in [1]

 # Arguments
 inputs (Layer): Input layer of the discriminator (the image)
 activation (string): Name of output activation layer
 num_labels (int): Dimension of one-hot labels for ACGAN &
InfoGAN
 num_codes (int): num_codes-dim Q network as output
 if StackedGAN or 2 Q networks if InfoGAN

 # Returns
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 # default output is probability that the image is real
 outputs = Dense(1)(x)

Disentangled Representation GANs

[170]

 if activation is not None:
 print(activation)
 outputs = Activation(activation)(outputs)

 if num_labels:
 # ACGAN and InfoGAN have 2nd output
 # 2nd output is 10-dim one-hot vector of label
 layer = Dense(layer_filters[-2])(x)
 labels = Dense(num_labels)(layer)
 labels = Activation('softmax', name='label')(labels)
 if num_codes is None:
 outputs = [outputs, labels]
 else:
 # InfoGAN have 3rd and 4th outputs
 # 3rd output is 1-dim continous Q of 1st c given x
 code1 = Dense(1)(layer)
 code1 = Activation('sigmoid', name='code1')(code1)

 # 4th output is 1-dim continuous Q of 2nd c given x
 code2 = Dense(1)(layer)
 code2 = Activation('sigmoid', name='code2')(code2)

 outputs = [outputs, labels, code1, code2]
 elif num_codes is not None:
	 # StackedGAN Q0 output
 # z0_recon is reconstruction of z0 normal distribution
 z0_recon = Dense(num_codes)(x)
 z0_recon = Activation('tanh', name='z0')(z0_recon)
 outputs = [outputs, z0_recon]

 return Model(inputs, outputs, name='discriminator')

Figure 6.1.4 shows the InfoGAN model in Keras. Building the discriminator and
adversarial models also requires a number of changes. The changes are on the loss
functions used. The original discriminator loss function binary_crossentropy,
the categorical_crossentropy for discrete code, and the mi_loss function for
each continuous code comprise the overall loss function. Each loss function is given
a weight of 1.0, except for the mi_loss function which is given 0.5 corresponding
to 0.5λ = for the continuous code.

Listing 6.1.3 highlights the changes made. However, we should note that by using
the builder function, the discriminator is instantiated as:

Chapter 6

[171]

call discriminator builder with 4 outputs: source, label,
and 2 codes
discriminator = gan.discriminator(inputs, num_labels=num_labels, with_
codes=True)

The generator is created by:

call generator with inputs, labels and codes as total inputs
to generator
generator = gan.generator(inputs, image_size, labels=labels,
codes=[code1, code2])

Figure 6.1.4: The InfoGAN Keras model

Disentangled Representation GANs

[172]

Listing 6.1.3, infogan-mnist-6.1.1.py shows us the mutual Information loss
function as used in building the InfoGAN discriminator and adversarial networks:

def mi_loss(c, q_of_c_given_x):
 """ Mutual information, Equation 5 in [2], assuming H(c) is
constant"""
 # mi_loss = -c * log(Q(c|x))
 return K.mean(-K.sum(K.log(q_of_c_given_x + K.epsilon()) * c,
axis=1))

def build_and_train_models(latent_size=100):
 # load MNIST dataset
 (x_train, y_train), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 # train labels
 num_labels = len(np.unique(y_train))
 y_train = to_categorical(y_train)

 model_name = "infogan_mnist"
 # network parameters
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)
 code_shape = (1,)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 # call discriminator builder with 4 outputs:
 # source, label, and 2 codes
 discriminator = gan.discriminator(inputs,
 num_labels=num_labels,
 num_codes=2)
 # [1] uses Adam, but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # loss functions: 1) probability image is real (binary
crossentropy)

Chapter 6

[173]

 # 2) categorical cross entropy image label,
 # 3) and 4) mutual information loss
 loss = ['binary_crossentropy', 'categorical_crossentropy', mi_
loss, mi_loss]
 # lamda or mi_loss weight is 0.5
 loss_weights = [1.0, 1.0, 0.5, 0.5]
 discriminator.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 labels = Input(shape=label_shape, name='labels')
 code1 = Input(shape=code_shape, name="code1")
 code2 = Input(shape=code_shape, name="code2")
 # call generator with inputs,
 # labels and codes as total inputs to generator
 generator = gan.generator(inputs,
 image_size,
 labels=labels,
 codes=[code1, code2])
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 discriminator.trainable = False
 # total inputs = noise code, labels, and codes
 inputs = [inputs, labels, code1, code2]
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 # same loss as discriminator
 adversarial.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)

Disentangled Representation GANs

[174]

 data = (x_train, y_train)
 params = (batch_size, latent_size, train_steps, num_labels,
model_name)
 train(models, data, params)

As far as the training is concerned, we can see that InfoGAN is similar to ACGAN
except that we need to supply c for the continuous code. c is drawn from normal
distribution with a standard deviation of 0.5 and mean of 0.0. We'll use randomly
sampled labels for the fake data and dataset class labels for the real data to represent
discrete latent code. Following listing highlights the changes made on the training
function. Similar to all previous GANs, the discriminator and generator (through
adversarial) are trained alternately. During adversarial training, the discriminator
weights are frozen. Sample generator output images are saved every 500 interval
steps by using the gan.py plot_images() function.

Listing 6.1.4, infogan-mnist-6.1.1.py shows us how the training function for
InfoGAN is similar to ACGAN. The only difference is that we supply continuous
codes sampled from a normal distribution:

def train(models, data, params):
 """Train the Discriminator and Adversarial networks

 Alternately train discriminator and adversarial networks by batch.
 Discriminator is trained first with real and fake images,
 corresponding one-hot labels and continuous codes.
 Adversarial is trained next with fake images pretending to be
real,
 corresponding one-hot labels and continous codes.
 Generate sample images per save_interval.

 # Arguments
 models (Models): Generator, Discriminator, Adversarial models
 data (tuple): x_train, y_train data
 params (tuple): Network parameters
 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and their one-hot labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name =
params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output evolves

Chapter 6

[175]

 # during training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
 # random class labels and codes
 noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 noise_code1 = np.random.normal(scale=0.5, size=[16, 1])
 noise_code2 = np.random.normal(scale=0.5, size=[16, 1])
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_label, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images and corresponding labels from
dataset
 rand_indexes = np.random.randint(0, train_size, size=batch_
size)
 real_images = x_train[rand_indexes]
 real_labels = y_train[rand_indexes]
 # random codes for real images
 real_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
 real_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
 # generate fake images, labels and codes
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 fake_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
 fake_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
 inputs = [noise, fake_labels, fake_code1, fake_code2]
 fake_images = generator.predict(inputs)

 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 labels = np.concatenate((real_labels, fake_labels))
 codes1 = np.concatenate((real_code1, fake_code1))
 codes2 = np.concatenate((real_code2, fake_code2))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0

Disentangled Representation GANs

[176]

 y[batch_size:, :] = 0

 # train discriminator network, log the loss and label accuracy
 outputs = [y, labels, codes1, codes2]
 # metrics = ['loss', 'activation_1_loss', 'label_loss',
 # 'code1_loss', 'code2_loss', 'activation_1_acc',
 # 'label_acc', 'code1_acc', 'code2_acc']
 # from discriminator.metrics_names
 metrics = discriminator.train_on_batch(x, outputs)
 fmt = "%d: [discriminator loss: %f, label_acc: %f]"
 log = fmt % (i, metrics[0], metrics[6])

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0 and
 # corresponding one-hot label or class + random codes
 # since the discriminator weights are frozen in
 # adversarial network only the generator is trained
 # generate fake images, labels and codes
 noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 fake_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
 fake_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
 # label fake images as real
 y = np.ones([batch_size, 1])

 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input of the
 # adversarial for classification
 # log the loss and label accuracy
 inputs = [noise, fake_labels, fake_code1, fake_code2]
 outputs = [y, fake_labels, fake_code1, fake_code2]
 metrics = adversarial.train_on_batch(inputs, outputs)
 fmt = "%s [adversarial loss: %f, label_acc: %f]"
 log = fmt % (log, metrics[0], metrics[6])

 print(log)
 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False

Chapter 6

[177]

 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 noise_label=noise_label,
 noise_codes=[noise_code1, noise_code2],
 show=show,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

Generator outputs of InfoGAN
Similar to all previous GANs that have been presented to us, we've trained InfoGAN
for 40,000 steps. After the training is completed, we're able to run the InfoGAN
generator to generate new outputs using the model saved on the infogan_mnist.h5
file. The following validations are conducted:

1.	 Generate digits 0 to 9 by varying the discrete labels from 0 to 9. Both
continuous codes are set to zero. The results are shown in Figure 6.1.5. We
can see that the InfoGAN discrete code can control the digits produced by
the generator:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5
--digit=0 --code1=0 --code2=0

 to

python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5
--digit=9 --code1=0 --code2=0

2.	 Examine the effect of the first continuous code to understand which attribute
has been affected. We vary the first continuous code from -2.0 to 2.0 for digits
0 to 9. The second continuous code is set to 0.0. Figure 6.1.6 shows that the
first continuous code controls the thickness of the digit:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5
--digit=0 --code1=0 --code2=0 --p1

3.	 Similar to the previous step, but instead focusing more on the second
continuous code. Figure 6.1.7 shows that the second continuous code
controls the rotation angle (tilt) of the writing style:

Disentangled Representation GANs

[178]

python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5
--digit=0 --code1=0 --code2=0 --p2

Figure 6.1.5: The images generated by the InfoGAN as the discrete code
is varied from 0 to 9. Both continuous codes are set to zero.

Figure 6.1.6: The images generated by InfoGAN as the first continuous code is varied from -2.0 to 2.0 for digits
0 to 9. The second continuous code is set to zero. The first continuous code controls the thickness of the digit.

Chapter 6

[179]

Figure 6.1.7: The images generated by InfoGAN as the second continuous code is varied from -2.0 to 2.0 for
digits 0 to 9. The first continuous code is set to zero. The second continuous code controls the rotation angle

(tilt) of the writing style.

From these validation results, we can see that apart from the ability to generate
MNIST looking digits, InfoGAN expanded the ability of conditional GANs such
as CGAN and ACGAN. The network automatically learned two arbitrary codes
that can control the specific attributes of the generator output. It would be interesting
to see what additional attributes could be controlled if we increased the number
of continuous codes beyond 2.

StackedGAN
In the same spirit as InfoGAN, StackedGAN proposes a method for disentangling
latent representations for conditioning generator outputs. However, StackedGAN
uses a different approach to the problem. Instead of learning how to condition the
noise to produce the desired output, StackedGAN breaks down a GAN into a stack
of GANs. Each GAN is trained independently in the usual discriminator-adversarial
manner with its own latent code.

Figure 6.2.1 shows us how StackedGAN works in the context of the hypothetical
celebrity face generation. Assuming that the Encoder network is trained to classify
celebrity faces.

Disentangled Representation GANs

[180]

The Encoder network is made of a stack of simple encoders, Encoderi where i = 0 …
n - 1 corresponding to n features. Each encoder extracts certain facial features. For
example, Encoder0 may be the encoder for hairstyle features, Features1. All the simple
encoders contribute to making the overall Encoder perform correct predictions.

The idea behind StackedGAN is that if we would like to build a GAN that generates
fake celebrity faces, we should simply invert the Encoder. StackedGAN are made
of a stack of simpler GANs, GANi where i = 0 … n - 1 corresponding to n features.
Each GANi learns to invert the process of its corresponding encoder, Encoderi. For
example, GAN0 generates fake celebrity faces from fake hairstyle features which is
the inverse of the Encoder0 process.

Each GANi uses a latent code, zi, that conditions its generator output. For example,
the latent code, z0, can alter the hairstyle from curly to wavy. The stack of GANs
can also act as one to synthesize fake celebrity faces, completing the inverse process
of the whole Encoder. The latent code of each GANi, zi, can be used to alter specific
attributes of fake celebrity faces:

Figure 6.2.1: The basic idea of StackedGAN in the context of celebrity faces generation. Assuming that there is
a hypothetical deep encoder network that can perform classification on celebrity faces, a StackedGAN simply

inverts the process of the encoder.

Chapter 6

[181]

Implementation of StackedGAN in Keras
The detailed network model of StackedGAN can be seen in the following figure.
For conciseness, only two encoder-GANs per stack are shown. The figure may
initially appear complex, but it is just a repetition of an encoder-GAN. Meaning
that if we understood how to train one encoder-GAN, the rest uses the same concept.
In the following section, we assume that the StackedGAN is designed for the MNIST
digit generation:

Figure 6.2.2: A StackedGAN is made of a stack of an encoder and GAN. The encoder is pre-trained to
perform classification. Generator1, G1, learns to synthesize f1f features conditioned on the fake label, yf, and

latent code, z1f. Generator0, G0, produces fake images using both the fake features, f1f and latent code, z0f.

Disentangled Representation GANs

[182]

StackedGAN starts with an Encoder. It could be a trained classifier that predicts
the correct labels. The intermediate features vector, f1r, is made available for
GAN training. For MNIST, we can use a CNN-based classifier similar to what
we discussed in Chapter 1, Introducing Advanced Deep Learning with Keras. Following
figure shows the Encoder and its network model implementation in Keras:

Figure 6.2.3: The encoder in StackedGAN is a simple CNN-based classifier

Listing 6.2.1 shows the Keras code for preceding figure. It is similar to the CNN-
based classifier in Chapter 1, Introducing Advanced Deep Learning with Keras except
that we use a Dense layer to extract the 256-dim feature. There are two output
models, Encoder0 and Encoder1. Both will be used to train the StackedGAN.

The Encoder0 output, f1r, is the 256-dim feature vector that we want Generator1 to learn
to synthesize. It is available as an auxiliary output of Encoder0, E0. The overall Encoder
is trained to classify MNIST digits, xr. The correct labels, yr, are predicted by Encoder1,
E1. In the process, the intermediate set of features, f1r, is learned and made available
for Generator0 training. Subscript r is used to emphasize and distinguish real data
from fake data when the GAN is trained against this encoder.

Listing 6.2.1, stackedgan-mnist-6.2.1.py shows encoder implementation in Keras:

def build_encoder(inputs, num_labels=10, feature1_dim=256):
 """ Build the Classifier (Encoder) Model sub networks

 Two sub networks:
 1) Encoder0: Image to feature1 (intermediate latent feature)
 2) Encoder1: feature1 to labels

Chapter 6

[183]

 # Arguments
 inputs (Layers): x - images, feature1 - feature1 layer output
 num_labels (int): number of class labels
 feature1_dim (int): feature1 dimensionality

 # Returns
 enc0, enc1 (Models): Description below
 """
 kernel_size = 3
 filters = 64

 x, feature1 = inputs
 # Encoder0 or enc0
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(x)
 y = MaxPooling2D()(y)
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(y)
 y = MaxPooling2D()(y)
 y = Flatten()(y)
 feature1_output = Dense(feature1_dim, activation='relu')(y)
 # Encoder0 or enc0: image to feature1
 enc0 = Model(inputs=x, outputs=feature1_output, name="encoder0")

 # Encoder1 or enc1
 y = Dense(num_labels)(feature1)
 labels = Activation('softmax')(y)
 # Encoder1 or enc1: feature1 to class labels
 enc1 = Model(inputs=feature1, outputs=labels, name="encoder1")

 # return both enc0 and enc1
 return enc0, enc1

Network Loss Functions Number
GAN () () ()()()log log 1

data

D
x p z= − − − z∼E EL D D Gx

() ()()logG
z z= −EL D G

4.1.1

4.1.5

Disentangled Representation GANs

[184]

StackedGAN () () ()()()~ 1~ , 1log log 1 ,
data data i

D
i fi p i fi p z i if f z+ +=− − −E EL D D G

() ()()
1 , 1log ,adv

i data i

G
i f p z i if z

+ += − ∼EL D G

() ()()
1 , 1 1 2|| , , ||cond

i data i

G
i f p z i i if z f

+ + += ∼EL G

() ()()
1 , 1 2|| , , ||ent

i i

G
i f z i i if z z

+ += EL G

() () () ()
1 2 3

adv cond entG G GG
i i i iλ λ λ= + +L L L L

where 1 2 3, ,andλ λ λ are weights and

i Encoder and GAN id=

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Table 6.2.1: A comparison between the loss functions of GAN and StackedGAN.
~pdata means sampling from the corresponding encoder data (input, feature or output).

Given the Encoder inputs (xr) intermediate features (f1r) and labels (yr), each GAN
is trained in the usual discriminator–adversarial manner. The loss functions are
given by Equation 6.2.1 to 6.2.5 in Table 6.2.1. Equations 6.2.1 and 6.2.2 are the usual
loss functions of the generic GAN. StackedGAN has two additional loss functions,
Conditional and Entropy.

The conditional loss function, ()condG
iL in Equation 6.2.3, ensures that the generator does

not ignore the input, fi+1, when synthesizing the output, fi, from input noise code
zi. The encoder, Encoderi, must be able to recover the generator input by inverting
the process of the generator, Generatori. The difference between the generator input
and the recovered input using the encoder is measured by L2 or Euclidean distance
Mean Squared Error (MSE). Figure 6.2.4 shows the network elements involved in
the computation of ()

0
condGL :

Chapter 6

[185]

Figure 6.2.4: A simpler version of Figure 6.2.3 showing only the network elements
involved in the computation of ()

0
condGL

The conditional loss function, however, introduces a new problem for us. The generator
ignores the input noise code, zi and simply relies on fi+1. Entropy loss function, ()

0
condGL

in Equation 6.2.4, ensures that the generator does not ignore the noise code, zi. The
Q-Network recovers the noise code from the output of the generator. The difference
between the recovered noise and the input noise is also measured by L2 or the MSE.
Following figure shows the network elements involved in the computation of ()

0
entGL :

Figure 6.2.5: A simpler version of Figure 6.2.3 only showing us the network elements involved in the
computation of ()

0
entGL

Disentangled Representation GANs

[186]

The last loss function is similar to the usual GAN loss. It's made of a discriminator
loss ()D

iL and a generator (through adversarial) loss ()advG
iL . Following figure shows

us the elements involved in the GAN loss:

Figure 6.2.6: A simpler version of Figure 6.2.3 showing only the network elements
involved in the computation of ()D

iL and ()advG
iL

In Equation 6.2.5, the weighted sum of the three generator loss functions is the final
generator loss function. In the Keras code that we will present, all the weights are
set to 1.0, except for the entropy loss which is set to 10.0. In Equation 6.2.1 to Equation
6.2.5, i refers to the encoder and GAN group id or level. In the original paper, the
network is first trained independently and then jointly. During independent training,
the encoder is trained first. During joint training, both real and fake data are used.

The implementation of the StackedGAN generator and discriminator in Keras
requires few changes to provide auxiliary points to access the intermediate features.
Figure 6.2.7 shows the generator Keras model. Listing 6.2.2 illustrates the function
that builds two generators (gen0 and gen1) corresponding to Generator0 and
Generator1. The gen1 generator is made of three Dense layers with label and the noise
code z1f as inputs. The third layer generates the fake f1f feature. The gen0 generator is
similar to other GAN generators that we've presented and can be instantiated using
the generator builder in gan.py:

gen0: feature1 + z0 to feature0 (image)
gen0 = gan.generator(feature1, image_size, codes=z0)

The gen0 input is f1 features and the noise code z0. The output is the generated fake
image, xf:

Chapter 6

[187]

Figure 6.2.7: A StackedGAN Generator model in Keras

Listing 6.2.2, stackedgan-mnist-6.2.1.py shows us generator implementation
in Keras:

def build_generator(latent_codes, image_size, feature1_dim=256):
 """Build Generator Model sub networks

 Two sub networks: 1) Class and noise to feature1 (intermediate
feature)
 2) feature1 to image

 # Arguments
 latent_codes (Layers): discrete code (labels), noise and
feature1 features
 image_size (int): Target size of one side (assuming square
image)

Disentangled Representation GANs

[188]

 feature1_dim (int): feature1 dimensionality

 # Returns
 gen0, gen1 (Models): Description below
 """

 # Latent codes and network parameters
 labels, z0, z1, feature1 = latent_codes
 # image_resize = image_size // 4
 # kernel_size = 5
 # layer_filters = [128, 64, 32, 1]

 # gen1 inputs
 inputs = [labels, z1] # 10 + 50 = 62-dim
 x = concatenate(inputs, axis=1)
 x = Dense(512, activation='relu')(x)
 x = BatchNormalization()(x)
 x = Dense(512, activation='relu')(x)
 x = BatchNormalization()(x)
 fake_feature1 = Dense(feature1_dim, activation='relu')(x)
 # gen1: classes and noise (feature2 + z1) to feature1
 gen1 = Model(inputs, fake_feature1, name='gen1')

 # gen0: feature1 + z0 to feature0 (image)
 gen0 = gan.generator(feature1, image_size, codes=z0)

 return gen0, gen1

Figure 6.2.8 shows the discriminator Keras model. We provide the functions to build
Discriminator0 and Discriminator1 (dis0 and dis1).The dis0 discriminator is similar
to a GAN discriminator except for the feature vector input and the auxiliary network
Q0 that recovers z0. The builder function in gan.py is used to create dis0:

dis0 = gan.discriminator(inputs, num_codes=z_dim)

The dis1 discriminator is made of a three-layer MLP as shown in Listing 6.2.3.
The last layer discriminates between the real and fake f1. Q1 network shares the
first two layers of dis1. Its third layer recovers z1:

Chapter 6

[189]

Figure 6.2.8: A StackedGAN Discriminator model in Keras

Listing 6.2.3, stackedgan-mnist-6.2.1.py shows the Discriminator1 implementation
in Keras:

def build_discriminator(inputs, z_dim=50):
 """Build Discriminator 1 Model

 Classifies feature1 (features) as real/fake image and recovers
 the input noise or latent code (by minimizing entropy loss)

 # Arguments
 inputs (Layer): feature1
 z_dim (int): noise dimensionality

 # Returns
 dis1 (Model): feature1 as real/fake and recovered latent code
 """

 # input is 256-dim feature1
 x = Dense(256, activation='relu')(inputs)
 x = Dense(256, activation='relu')(x)

Disentangled Representation GANs

[190]

 # first output is probability that feature1 is real
 f1_source = Dense(1)(x)
 f1_source = Activation('sigmoid', name='feature1_source')
(f1_source)

 # z1 reonstruction (Q1 network)
 z1_recon = Dense(z_dim)(x)
 z1_recon = Activation('tanh', name='z1')(z1_recon)

 discriminator_outputs = [f1_source, z1_recon]
 dis1 = Model(inputs, discriminator_outputs, name='dis1')
 return dis1

With all builder functions available, StackedGAN is assembled in Listing 6.2.4. Before
training StackedGAN, the encoder is pretrained. Note that we already incorporated
the three generator loss functions (adversarial, conditional, and entropy) in the
adversarial model training. The Q-Network shares some common layers with
the discriminator model. Therefore, its loss function is also incorporated in the
discriminator model training.

Listing 6.2.4, stackedgan-mnist-6.2.1.py. Building StackedGAN in Keras:

def build_and_train_models():
 # load MNIST dataset
 (x_train, y_train), (x_test, y_test) = mnist.load_data()

 # reshape and normalize images
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
 x_test = x_test.astype('float32') / 255

 # number of labels
 num_labels = len(np.unique(y_train))
 # to one-hot vector
 y_train = to_categorical(y_train)
 y_test = to_categorical(y_test)

 model_name = "stackedgan_mnist"
 # network parameters
 batch_size = 64
 train_steps = 40000

Chapter 6

[191]

 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)
 z_dim = 50
 z_shape = (z_dim,)
 feature1_dim = 256
 feature1_shape = (feature1_dim,)

 # build discriminator 0 and Q network 0 models
 inputs = Input(shape=input_shape, name='discriminator0_input')
 dis0 = gan.discriminator(inputs, num_codes=z_dim)
 # [1] uses Adam, but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # loss fuctions: 1) probability image is real (adversarial0 loss)
 # 2) MSE z0 recon loss (Q0 network loss or entropy0 loss)
 loss = ['binary_crossentropy', 'mse']
 loss_weights = [1.0, 10.0]
 dis0.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 dis0.summary() # image discriminator, z0 estimator

 # build discriminator 1 and Q network 1 models
 input_shape = (feature1_dim,)
 inputs = Input(shape=input_shape, name='discriminator1_input')
 dis1 = build_discriminator(inputs, z_dim=z_dim)
 # loss fuctions: 1) probability feature1 is real (adversarial1
loss)
 # 2) MSE z1 recon loss (Q1 network loss or entropy1 loss)
 loss = ['binary_crossentropy', 'mse']
 loss_weights = [1.0, 1.0]
 dis1.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 dis1.summary() # feature1 discriminator, z1 estimator

 # build generator models
 feature1 = Input(shape=feature1_shape, name='feature1_input')
 labels = Input(shape=label_shape, name='labels')
 z1 = Input(shape=z_shape, name="z1_input")
 z0 = Input(shape=z_shape, name="z0_input")

Disentangled Representation GANs

[192]

 latent_codes = (labels, z0, z1, feature1)
 gen0, gen1 = build_generator(latent_codes, image_size)
 gen0.summary() # image generator
 gen1.summary() # feature1 generator

 # build encoder models
 input_shape = (image_size, image_size, 1)
 inputs = Input(shape=input_shape, name='encoder_input')
 enc0, enc1 = build_encoder((inputs, feature1), num_labels)
 enc0.summary() # image to feature1 encoder
 enc1.summary() # feature1 to labels encoder (classifier)
 encoder = Model(inputs, enc1(enc0(inputs)))
 encoder.summary() # image to labels encoder (classifier)

 data = (x_train, y_train), (x_test, y_test)
 train_encoder(encoder, data, model_name=model_name)

 # build adversarial0 model =
 # generator0 + discriminator0 + encoder0
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 # encoder0 weights frozen
 enc0.trainable = False
 # discriminator0 weights frozen
 dis0.trainable = False
 gen0_inputs = [feature1, z0]
 gen0_outputs = gen0(gen0_inputs)
 adv0_outputs = dis0(gen0_outputs) + [enc0(gen0_outputs)]
 # feature1 + z0 to prob feature1 is
 # real + z0 recon + feature0/image recon
 adv0 = Model(gen0_inputs, adv0_outputs, name="adv0")
 # loss functions: 1) prob feature1 is real (adversarial0 loss)
 # 2) Q network 0 loss (entropy0 loss)
 # 3) conditional0 loss
 loss = ['binary_crossentropy', 'mse', 'mse']
 loss_weights = [1.0, 10.0, 1.0]
 adv0.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adv0.summary()

 # build adversarial1 model =
 # generator1 + discriminator1 + encoder1
 # encoder1 weights frozen

Chapter 6

[193]

 enc1.trainable = False
 # discriminator1 weights frozen
 dis1.trainable = False
 gen1_inputs = [labels, z1]
 gen1_outputs = gen1(gen1_inputs)
 adv1_outputs = dis1(gen1_outputs) + [enc1(gen1_outputs)]
 # labels + z1 to prob labels are real + z1 recon + feature1 recon
 adv1 = Model(gen1_inputs, adv1_outputs, name="adv1")
 # loss functions: 1) prob labels are real (adversarial1 loss)
 # 2) Q network 1 loss (entropy1 loss)
 # 3) conditional1 loss (classifier error)
 loss_weights = [1.0, 1.0, 1.0]
 loss = ['binary_crossentropy', 'mse', 'categorical_crossentropy']
 adv1.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adv1.summary()

 # train discriminator and adversarial networks
 models = (enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1)
 params = (batch_size, train_steps, num_labels, z_dim, model_name)
 train(models, data, params)

Finally, the training function bears a resemblance to a typical GAN training except
that we only train one GAN at a time (that is, GAN1 then GAN0). The code is shown
in Listing 6.2.5. It's worth noting that the training sequence is:

1.	 Discriminator1 and Q1 networks by minimizing the discriminator and entropy
losses

2.	 Discriminator0 and Q0 networks by minimizing the discriminator and entropy
losses

3.	 Adversarial1 network by minimizing the adversarial, entropy, and conditional
losses

4.	 Adversarial0 network by minimizing the adversarial, entropy, and conditional
losses

Listing 6.2.5, stackedgan-mnist-6.2.1.py shows us training the StackedGAN
in Keras:

def train(models, data, params):
 """Train the discriminator and adversarial Networks

 Alternately train discriminator and adversarial networks by batch.

Disentangled Representation GANs

[194]

 Discriminator is trained first with real and fake images,
 corresponding one-hot labels and latent codes.
 Adversarial is trained next with fake images pretending
to be real,
 corresponding one-hot labels and latent codes.
 Generate sample images per save_interval.

 # Arguments
 models (Models): Encoder, Generator, Discriminator,
Adversarial models
 data (tuple): x_train, y_train data
 params (tuple): Network parameters

 """
 # the StackedGAN and Encoder models
 enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1 = models
 # network parameters
 batch_size, train_steps, num_labels, z_dim, model_name = params
 # train dataset
 (x_train, y_train), (_, _) = data
 # the generator image is saved every 500 steps
 save_interval = 500

 # label and noise codes for generator testing
 z0 = np.random.normal(scale=0.5, size=[16, z_dim])
 z1 = np.random.normal(scale=0.5, size=[16, z_dim])
 noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 noise_params = [noise_class, z0, z1]
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_class, axis=1))

 for i in range(train_steps):
 # train the discriminator1 for 1 batch
 # 1 batch of real (label=1.0) and fake feature1 (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0, train_size,
size=batch_size)
 real_images = x_train[rand_indexes]
 # real feature1 from encoder0 output
 real_feature1 = enc0.predict(real_images)
 # generate random 50-dim z1 latent code

Chapter 6

[195]

 real_z1 = np.random.normal(scale=0.5, size=[batch_size,
z_dim])
 # real labels from dataset
 real_labels = y_train[rand_indexes]

 # generate fake feature1 using generator1 from
 # real labels and 50-dim z1 latent code
 fake_z1 = np.random.normal(scale=0.5, size=[batch_size,
z_dim])
 fake_feature1 = gen1.predict([real_labels, fake_z1])

 # real + fake data
 feature1 = np.concatenate((real_feature1, fake_feature1))
 z1 = np.concatenate((fake_z1, fake_z1))

 # label 1st half as real and 2nd half as fake
 y = np.ones([2 * batch_size, 1])
 y[batch_size:, :] = 0

 # train discriminator1 to classify feature1
 # as real/fake and recover
 # latent code (z1). real = from encoder1,
 # fake = from genenerator1
 # joint training using discriminator part of advserial1 loss
 # and entropy1 loss
 metrics = dis1.train_on_batch(feature1, [y, z1])
 # log the overall loss only (fr dis1.metrics_names)
 log = "%d: [dis1_loss: %f]" % (i, metrics[0])

 # train the discriminator0 for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # generate random 50-dim z0 latent code
 fake_z0 = np.random.normal(scale=0.5, size=[batch_size,
z_dim])
 # generate fake images from real feature1 and fake z0
 fake_images = gen0.predict([real_feature1, fake_z0])

 # real + fake data
 x = np.concatenate((real_images, fake_images))
 z0 = np.concatenate((fake_z0, fake_z0))

 # train discriminator0 to classify image as real/fake
and recover
 # latent code (z0)

Disentangled Representation GANs

[196]

 # joint training using discriminator part of advserial0 loss
 # and entropy0 loss
 metrics = dis0.train_on_batch(x, [y, z0])
 # log the overall loss only (fr dis0.metrics_names)
 log = "%s [dis0_loss: %f]" % (log, metrics[0])

 # adversarial training
 # generate fake z1, labels
 fake_z1 = np.random.normal(scale=0.5, size=[batch_size,
z_dim])
 # input to generator1 is sampling fr real labels and
 # 50-dim z1 latent code
 gen1_inputs = [real_labels, fake_z1]

 # label fake feature1 as real
 y = np.ones([batch_size, 1])

 # train generator1 (thru adversarial) by
 # fooling the discriminator
 # and approximating encoder1 feature1 generator
 # joint training: adversarial1, entropy1, conditional1
 metrics = adv1.train_on_batch(gen1_inputs, [y, fake_z1,
real_labels])
 fmt = "%s [adv1_loss: %f, enc1_acc: %f]"
 # log the overall loss and classification accuracy
 log = fmt % (log, metrics[0], metrics[6])

 # input to generator0 is real feature1 and
 # 50-dim z0 latent code
 fake_z0 = np.random.normal(scale=0.5, size=[batch_size,
z_dim])
 gen0_inputs = [real_feature1, fake_z0]

 # train generator0 (thru adversarial) by
 # fooling the discriminator
 # and approximating encoder1 image source generator
 # joint training: adversarial0, entropy0, conditional0
 metrics = adv0.train_on_batch(gen0_inputs, [y, fake_z0,
real_feature1])
 # log the overall loss only
 log = "%s [adv0_loss: %f]" % (log, metrics[0])

 print(log)

Chapter 6

[197]

 if (i + 1) % save_interval == 0:
 if (i + 1) == train_steps:
 show = True
 else:
 show = False
 generators = (gen0, gen1)
 plot_images(generators,
 noise_params=noise_params,
 show=show,
 step=(i + 1),
 model_name=model_name)

 # save the modelis after training generator0 & 1
 # the trained generator can be reloaded for
 # future MNIST digit generation
 gen1.save(model_name + "-gen1.h5")
 gen0.save(model_name + "-gen0.h5")

Generator outputs of StackedGAN
After training the StackedGAN for 10,000 steps, the Generator0 and Generator1 models
are saved on files. Stacked together, Generator0 and Generator1 can synthesize fake
images conditioned on label and noise codes, z0 and z1.

The StackedGAN generator can be qualitatively validated by:

1.	 Varying the discrete labels from 0 to 9 with both noise codes, z0 and z1
sampled from a normal distribution with a mean of 0.5 and standard
-deviation of 1.0. The results are shown in Figure 6.2.9. We're able to see
that the StackedGAN discrete code can control the digits produced by
the generator:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=0

 to

python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=9

Disentangled Representation GANs

[198]

2.	 Varying the first noise code, z0, as a constant vector from -4.0 to 4.0 for digits
0 to 9 as shown as follows. The second noise code, z0, is set to zero vector.
Figure 6.2.10 shows that the first noise code controls the thickness of the digit.
For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 –p0

--digit=8

3.	 Varying the second noise code, z1, as a constant vector from -1.0 to 1.0 for
digits 0 to 9 shown as follows. The first noise code, z0, is set to zero vector.
Figure 6.2.11 shows that the second noise code controls the rotation (tilt)
and to a certain extent the thickness of the digit. For example, for digit 8:

python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 –p1

--digit=8

Figure 6.2.9: Images generated by StackedGAN as the discrete code is varied from 0 to 9. Both 0z and 1z have
been sampled from a normal distribution with zero mean and 0.5 standard deviation.

Chapter 6

[199]

Figure 6.2.10: Images generated by using a StackedGAN as the first noise code, z0, varies from
constant vector -4.0 to 4.0 for digits 0 to 9. z0 appears to control the thickness of each digit.

Figure 6.2.11: The images generated by StackedGAN as the second noise code, z1, varies from constant vector
-1.0 to 1.0 for digits 0 to 9. z1 appears to control the rotation (tilt) and the thickness of stroke of each digit.

Disentangled Representation GANs

[200]

Figures 6.2.9 to 6.2.11 demonstrate that the StackedGAN has provided additional
control on the attributes of the generator outputs. The control and attributes are
(label, which digit), (z0, digit thickness), and (z1, digit tilt). From this example,
there are other possible experiments that we can control such as:

•	 Increasing the number of elements of the stack from the current 2
•	 Decreasing the dimension of codes z0 and z1, like in InfoGAN

Following figure shows the differences between the latent codes of InfoGAN and
StackedGAN. The basic idea of disentangling codes is to put a constraint on the
loss functions such that only specific attributes are affected by a code. Structure-wise,
InfoGAN are easier to implement when compared to StackedGAN. InfoGAN is also
faster to train:

Figure 6.2.12: Latent representations for different GANs

Conclusion
In this chapter, we've discussed how to disentangle the latent representations
of GANs. Earlier on in the chapter, we discussed how InfoGAN maximizes the
mutual information in order to force the generator to learn disentangled latent
vectors. In the MNIST dataset example, InfoGAN uses three representations and
a noise code as inputs. The noise represents the rest of the attributes in the form
of an entangled representation. StackedGAN approaches the problem in a different
way. It uses a stack of encoder-GANs to learn how to synthesize fake features
and images. The encoder is first trained to provide a dataset of features. Then,
the encoder-GANs are trained jointly to learn how to use the noise code to control
attributes of the generator output.

In the next chapter, we will embark on a new type of GAN that is able to generate
new data in another domain. For example, given an image of a horse, the GAN
can perform an automatic transformation to an image of a zebra. The interesting
feature of this type of GAN is that it can be trained without supervision.

Chapter 6

[201]

Reference
1.	 Xi Chen and others. InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets. Advances in Neural
Information Processing Systems, 2016(http://papers.nips.cc/
paper/6399-infogan-interpretable-representation-learning-by-
information-maximizing-generative-adversarial-nets.pdf).

2.	 Xun Huang and others. Stacked Generative Adversarial Networks. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2,
2017(http://openaccess.thecvf.com/content_cvpr_2017/papers/
Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf).

http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf

[203]

Cross-Domain GANs
In computer vision, computer graphics, and image processing a number of tasks
involve translating an image from one form to another. As an example, colorization
of grayscale images, converting satellite images to maps, changing the artwork style
of one artist to another, making night-time images into daytime, and summer photos
to winter, are just a few examples. These tasks are referred to as cross-domain
transfer and will be the focus of this chapter. An image in the source domain
is transferred to a target domain resulting in a new translated image.

A cross-domain transfer has a number of practical applications in the real world.
As an example, in autonomous driving research, collecting road scene driving data
is both time-consuming and expensive. In order to cover as many scene variations
as possible in that example, the roads would be traversed during different weather
conditions, seasons, and times giving us a large and varied amount of data. With the
use of a cross-domain transfer, it's possible to generate new synthetic scenes that look
real by translating existing images. For example, we may just need to collect road
scenes in the summer from one area and gather road scenes in the winter from
another place. Then, we can transform the summer images to winter and the winter
images to summer. In this case, it reduces the number of tasks having to be done
by half.

Generation of realistic synthesized images is an area that GANs excel at. Therefore,
cross-domain translation is one of the applications of GANs. In this chapter, we're
going to focus on a popular cross-domain GAN algorithm called CycleGAN [2].
Unlike other cross-domain transfer algorithms, such as a pix2pix [3], CycleGAN
doesn't require aligned training images to work. In aligned images, the training data
should be a pair of images made up of the source image and its corresponding target
image. For example, a satellite image and the corresponding map derived from this
image. CycleGAN only requires the satellite data images and maps. The maps may
be from another satellite data and are not necessarily previously generated from the
training data.

Cross-Domain GANs

[204]

In this chapter, we will explore the following:

•	 The principles of CycleGAN, including its implementation in Keras
•	 Example applications of CycleGAN, including the colorization of grayscale

images using the CIFAR10 dataset and style transfer as applied on MNIST
digits and Street View House Numbers (SVHN) [1] datasets

Principles of CycleGAN

Figure 7.1.1: Example of aligned image pair: left, original image and right, transformed image
using a Canny edge detector. Original photos were taken by the author.

Translating an image from one domain to another is a common task in computer
vision, computer graphics, and image processing. The preceding figure shows
edge detection which is a common image translation task. In this example, we can
consider the real photo (left) as an image in the source domain and the edge detected
photo (right) as a sample in the target domain. There are many other cross-domain
translation procedures that have practical applications such as:

•	 Satellite image to map
•	 Face image to emoji, caricature or anime
•	 Body image to the avatar
•	 Colorization of grayscale photos
•	 Medical scan to a real photo
•	 Real photo to an artist's painting

Chapter 7

[205]

There are many more examples of this in different fields. In computer vision and
image processing, for example, we can perform the translation by inventing an
algorithm that extracts features from the source image to translate it into the target
image. Canny edge operator is an example of such an algorithm. However, in many
cases, the translation is very complex to hand-engineer that it is almost impossible
to find a suitable algorithm. Both the source and target domain distributions are
high-dimensional and complex:

Figure 7.1.2: Example of not aligned image pair: left, a photo of real sunflowers along University
Avenue, University of the Philippines and right, Sunflowers by Vincent Van Gogh at the National Gallery,

London, UK. Original photos were taken by the author.

A workaround on the image translation problem is to use deep learning techniques.
If we have a sufficiently large dataset from both the source and target domains, we
can train a neural network to model the translation. Since the images in the target
domain must be automatically generated given a source image, they must look like
real samples from the target domain. GANs are a suitable network for such cross-
domain tasks. The pix2pix [3] algorithm is an example of a cross-domain algorithm.

The pix2pix bears a resemblance to Conditional GAN (CGAN) [4] that we discussed
in Chapter 4, Generative Adversarial Networks (GANs). We can recall, that in conditional
GANs, on top of the noise input, z, a condition such as in the form of a one-hot vector
constrains the generator's output. For example, in the MNIST digit, if we want the
generator to output the digit 8, the condition is the one-hot vector [0, 0, 0, 0, 0, 0, 0, 0,
1, 0]. In pix2pix, the condition is the image to be translated. The generator's output is
the translated image. The pix2pix is trained by optimizing the conditional GAN loss.
To minimize blurring in the generated images, the L1 loss is also included.

Cross-Domain GANs

[206]

The main disadvantage of neural networks similar to pix2pix is the training input, and
output images must be aligned. Figure 7.1.1 is an example of an aligned image pair. The
sample target image is generated from the source. In most occasions, aligned image
pairs are not available or expensive to generate from the source images, or we have no
idea on how to generate the target image from the given source image. What we have
are sample data from the source and target domains. Figure 7.1.2 is an example of data
from the source domain (real photo) and the target domain (Van Gogh's art style) on
the same sunflower subject. The source and target images are not necessarily aligned.

Unlike pix2pix, CycleGAN learns image translation as long as there are a sufficient
amount and variation of source and target data. No alignment is needed. CycleGAN
learns the source and target distributions and how to translate from source to target
distribution from given sample data. No supervision is needed. In the context of
Figure 7.1.2, we just need thousands of photos of real sunflowers and thousands
of photos of Van Gogh's paintings of sunflowers. After training the CycleGAN,
we're able to translate a photo of sunflowers to a Van Gogh's painting:

Figure 7.1.3: The CycleGAN model is made of four networks: Generator G, Generator F,
Discriminator Dy, and Discriminator Dx

Chapter 7

[207]

The CycleGAN Model
Figure 7.1.3 shows the network model of the CycleGAN. The objective of
the CycleGAN is to learn the function:

y' = G(x) (Equation 7.1.1)

That generates fake images, y', in the target domain as a function of the real source
image, x. Learning is unsupervised by capitalizing only on the available real images,
x, in the source domain and real images, y, in the target domain.

Unlike regular GANs, CycleGAN imposes the cycle-consistency constraint.
The forward cycle-consistency network ensures that the real source data can
be reconstructed from the fake target data:

x' = F(G(x)) (Equation 7.1.2)

This is done by minimizing the forward cycle-consistency L1 loss:

() ()()~ 1dataforward cyc x p x F G x x−
 = −  

EL (Equation 7.1.3)

The network is symmetric. The backward cycle-consistency network also attempts
to reconstruct the real target data from the fake source data:

y' = G(F(y)) (Equation 7.1.4)

This is done by minimizing the backward cycle-consistency L1 loss:

() ()()~ 1databackward cyc y p y G F y y−
 = −  

EL (Equation 7.1.5)

The sum of these two losses is known as cycle-consistency loss:

cyc forward cyc backward cyc− −= +L L L

() ()() () ()()~ ~1 1data datacyc x p x y p yF G x x G F y y   = − + −      
E EL (Equation 7.1.6)

The cycle-consistency loss uses L1 or Mean Absolute Error (MAE) since it
generally results in less blurry image reconstruction compared to L2 or Mean
Square Error (MSE).

Cross-Domain GANs

[208]

Similar to other GANs, the ultimate objective of CycleGAN is for the generator
G to learn how to synthesize fake target data, y', that can fool the discriminator,
Dy, in the forward cycle. Since the network is symmetric, CycleGAN also wants
the generator F to learn how to synthesize fake source data, x', that can fool the
discriminator, Dx, in the backward cycle. Inspired by the better perceptual quality
of Least Squares GAN (LSGAN) [5], as described in Chapter 5, Improved GANs,
CycleGAN also uses MSE for the discriminator and generator losses. Recall that the
difference of LSGAN from the original GAN is that the use of the MSE loss instead
of a binary cross-entropy loss. CycleGAN expresses the generator-discriminator loss
functions as:

()
() ()() () ()()2 2

~ ~1
data data

D
forward GAN y p y yy x p xD y D G x− = − +E EL (Equation 7.1.7)

()
() ()()()2~ 1

data

G
forward GAN x p yx D G x− = −EL (Equation 7.1.8)

()
() ()() () ()()2 2

~ ~1
data data

D
backward GAN x p x y p xx yD x D F y− = − +E EL (Equation 7.1.9)

()
() ()()()2~ 1

data

G
backward GAN y p xy D F y− = −EL (Equation 7.1.10)

() () ()D D D
GAN forward GAN backward GAN− −= +L L L (Equation 7.1.11)

() () ()D D D
GAN forward GAN backward GAN− −= +L L L (Equation 7.1.12)

The total loss of CycleGAN is shown as:

1 2GAN cycλ λ= +L L L (Equation 7.1.13)

CycleGAN recommends the following weight values: 1 1.0λ = and 2 10.0λ = to give
more importance to the cyclic consistency check.

The training strategy is similar to the vanilla GAN. Algorithm 7.1.1 summarizes the
CycleGAN training procedure.

Chapter 7

[209]

Repeat for n training steps:

1.	 Minimize ()D
forward GAN−L by training the forward-cycle discriminator using

real source and target data. A minibatch of real target data, y, is labeled
1.0. A minibatch of fake target data, y' = G(x), is labelled 0.0.

2.	 Minimize ()D
backward GAN−L by training the backward-cycle discriminator using

real source and target data. A minibatch of real source data, x, is labeled
1.0. A minibatch of fake source data, x' = F(y), is labeled 0.0.

3.	 Minimize
()G
GANL and cycL by training the forward-cycle and backward-cycle

generators in the adversarial networks. A minibatch of fake target data,
y' = G(x), is labeled 1.0. A minibatch of fake source data, x' = F(y), is labeled
1.0. The weights of discriminators are frozen.

Figure 7.1.4: During style transfer, the color composition may not be transferred successfully.
To address this issue, the identity loss is added to the total loss function.

Cross-Domain GANs

[210]

Figure 7.1.5: The CycleGAN model with identity loss as shown on the left side of the image

In neural style transfer problems, the color composition may not be successfully
transferred from source image to the fake target image. This problem is shown
in Figure 7.1.4. To address this problem, CycleGAN proposes to include the
forward and backward-cycle identity loss function:

() () () ()~ ~1 1data dataidentity x p y px yF x x G y y   = − + −      E EL (Equation 7.1.14)

The total loss of CycleGAN becomes:

1 2 3GAN cyc identityλ λ λ= + +L L L L (Equation 7.1.15)

with 3 0.5λ = . The identity loss is also optimized during adversarial training.
Figure 7.1.5 shows CycleGAN with identity loss.

Chapter 7

[211]

Implementing CycleGAN using Keras
Let us tackle a simple problem that CycleGAN can address. In Chapter 3,
Autoencoders, we used an autoencoder to colorize grayscale images from the
CIFAR10 dataset. We can recall that the CIFAR10 dataset is made of 50,000 trained
data and 10,000 test data samples of 32 × 32 RGB images belonging to ten categories.
We can convert all color images into grayscale using rgb2gray(RGB) as discussed in
Chapter 3, Autoencoders.

Following on from that, we can use the grayscale train images as source domain
images and the original color images as the target domain images. It's worth noting
that although the dataset is aligned, the input to our CycleGAN is a random sample
of color images and a random sample of grayscale images. Thus, our CycleGAN will
not see the train data as aligned. After training, we'll use the test grayscale images
to observe the performance of the CycleGAN:

Figure 7.1.6: The forward cycle generator G, implementation in Keras.
The generator is a U-Network made of encoder and decoder.

Cross-Domain GANs

[212]

As discussed in the previous section, to implement the CycleGAN, we need to build
two generators and two discriminators. The generator of CycleGAN learns the latent
representation of the source input distribution and translates this representation into
target output distribution. This is exactly what autoencoders do. However, typical
autoencoders similar to the ones discussed in Chapter 3, Autoencoders, use an encoder
that downsamples the input until the bottleneck layer at which point the process
is reversed in the decoder. This structure is not suitable in some image translation
problems since many low-level features are shared between the encoder and decoder
layers. For example, in colorization problems, the form, structure, and edges of the
grayscale image are the same as in the color image. To circumvent this problem,
the CycleGAN generators use a U-Net [7] structure as shown in Figure 7.1.6.

In a U-Net structure, the output of the encoder layer en-i is concatenated with
the output of the decoder layer di, where n = 4 is the number of encoder/decoder
layers and i = 1, 2 and 3 are layer numbers that share information.

We should note that although the example uses n = 4, problems with a higher input/
output dimensions may require deeper encoder/decoder. The U-Net structure
enables a free flow of feature-level information between encoder and decoder.
An encoder layer is made of Instance Normalization(IN)-LeakyReLU-Conv2D
while the decoder layer is made of IN-ReLU-Conv2D. The encoder/decoder layer
implementation is shown in Listing 7.1.1 while the generator implementation is
shown in Listing 7.1.2.

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Instance Normalization (IN) is Batch Normalization (BN) per sample of data
(that is, IN is BN per image or per feature). In style transfer, it's important to
normalize the contrast per sample not per batch. Instance normalization is
equivalent to contrast normalization. Meanwhile, Batch normalization breaks
contrast normalization.

Remember to install keras-contrib before using instance normalization:
$ sudo pip3 install git+https://www.github.com/keras-team/
keras-contrib.git

Listing 7.1.1, cyclegan-7.1.1.py shows us the encoder and decoder layers
implementation in Keras:

def encoder_layer(inputs,

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 7

[213]

 filters=16,
 kernel_size=3,
 strides=2,
 activation='relu',
 instance_norm=True):
 """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
 IN is optional, LeakyReLU may be replaced by ReLU

 """

 conv = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')

 x = inputs
 if instance_norm:
 x = InstanceNormalization()(x)
 if activation == 'relu':
 x = Activation('relu')(x)
 else:
 x = LeakyReLU(alpha=0.2)(x)
 x = conv(x)
 return x

def decoder_layer(inputs,
 paired_inputs,

 filters=16,
 kernel_size=3,
 strides=2,
 activation='relu',
 instance_norm=True):
 """Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
 IN is optional, LeakyReLU may be replaced by ReLU
 Arguments: (partial)
 inputs (tensor): the decoder layer input
 paired_inputs (tensor): the encoder layer output
 provided by U-Net skip connection &
 concatenated to inputs.
 """

 conv = Conv2DTranspose(filters=filters,

Cross-Domain GANs

[214]

 kernel_size=kernel_size,
 strides=strides,
 padding='same')

 x = inputs
 if instance_norm:
 x = InstanceNormalization()(x)
 if activation == 'relu':
 x = Activation('relu')(x)
 else:
 x = LeakyReLU(alpha=0.2)(x)
 x = conv(x)
 x = concatenate([x, paired_inputs])
 return x

Listing 7.1.2, cyclegan-7.1.1.py. Generator implementation in Keras:

def build_generator(input_shape,
 output_shape=None,
 kernel_size=3,
 name=None):
 """The generator is a U-Network made of a 4-layer encoder
 and a 4-layer decoder. Layer n-i is connected to layer i.

 Arguments:
 input_shape (tuple): input shape
 output_shape (tuple): output shape
 kernel_size (int): kernel size of encoder & decoder layers
 name (string): name assigned to generator model

 Returns:
 generator (Model):

 """

 inputs = Input(shape=input_shape)
 channels = int(output_shape[-1])
 e1 = encoder_layer(inputs,
 32,
 kernel_size=kernel_size,
 activation='leaky_relu',
 strides=1)
 e2 = encoder_layer(e1,
 64,
 activation='leaky_relu',

Chapter 7

[215]

 kernel_size=kernel_size)
 e3 = encoder_layer(e2,
 128,
 activation='leaky_relu',
 kernel_size=kernel_size)
 e4 = encoder_layer(e3,
 256,
 activation='leaky_relu',
 kernel_size=kernel_size)

 d1 = decoder_layer(e4,
 e3,
 128,
 kernel_size=kernel_size)
 d2 = decoder_layer(d1,
 e2,
 64,
 kernel_size=kernel_size)
 d3 = decoder_layer(d2,
 e1,
 32,
 kernel_size=kernel_size)
 outputs = Conv2DTranspose(channels,
 kernel_size=kernel_size,
 strides=1,
 activation='sigmoid',
 padding='same')(d3)

 generator = Model(inputs, outputs, name=name)

 return generator

The discriminator of CycleGAN is similar to vanilla GAN discriminator. The input
image is downsampled several times (in this example, three times). The final layer
is a Dense(1) layer which predicts the probability that the input is real. Each layer
is similar to the encoder layer of the generator except that no IN is used. However,
in large images, computing the image as real or fake with a single number turns
out to be parameter inefficient and results in poor image quality for the generator.

The solution is to use PatchGAN [6] which divides the image into a grid of patches
and use a grid of scalar values to predict the probability that the patches are real.
The comparison between the vanilla GAN discriminator and a 2 × 2 PatchGAN
discriminator is shown in Figure 7.1.7. In this example, the patches do not overlap
and meet at their boundaries. However, in general, patches may overlap.

Cross-Domain GANs

[216]

We should note that PatchGAN is not introducing a new type of GAN in
CycleGAN. To improve the generated image quality, instead of having one output
to discriminate, we have four outputs to discriminate if we used a 2 × 2 PatchGAN.
There are no changes in the loss functions. Intuitively, this makes sense since the
whole image will look more real if every patch or section of the image looks real:

Figure 7.1.7: A comparison between GAN and PatchGAN discriminators

Following figure shows the discriminator network as implemented in Keras. The
illustration shows the discriminator determining how likely the input image or
a patch is a color CIFAR10 image. Since the output image is small at only 32 × 32
RGB, a single scalar representing that the image is real is sufficient. However, we
also evaluate the results when PatchGAN is used. Listing 7.1.3 shows the function
builder for the discriminator:

Figure 7.1.8: The target discriminator, Dy, implementation in Keras. The PatchGAN discriminator is shown on the right.

Chapter 7

[217]

Listing 7.1.3, cyclegan-7.1.1.py shows discriminator implementation in Keras:

def build_discriminator(input_shape,
 kernel_size=3,
 patchgan=True,
 name=None):
 """The discriminator is a 4-layer encoder that outputs either
 a 1-dim or a n x n-dim patch of probability that input is real

 Arguments:
 input_shape (tuple): input shape
 kernel_size (int): kernel size of decoder layers
 patchgan (bool): whether the output is a patch or just a 1-dim
 name (string): name assigned to discriminator model

 Returns:
 discriminator (Model):

 """

 inputs = Input(shape=input_shape)
 x = encoder_layer(inputs,
 32,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 64,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 128,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 256,
 kernel_size=kernel_size,
 strides=1,
 activation='leaky_relu',
 instance_norm=False)

 # if patchgan=True use nxn-dim output of probability

Cross-Domain GANs

[218]

 # else use 1-dim output of probability
 if patchgan:
 x = LeakyReLU(alpha=0.2)(x)
 outputs = Conv2D(1,
 kernel_size=kernel_size,
 strides=1,
 padding='same')(x)
 else:
 x = Flatten()(x)
 x = Dense(1)(x)
 outputs = Activation('linear')(x)

 discriminator = Model(inputs, outputs, name=name)

 return discriminator

Using the generator and discriminator builders, we are now able to build the
CycleGAN. Listing 7.1.4 shows the builder function. In line with our discussion in
the previous section, two generators, g_source = F and g_target = G, and two
discriminators, d_source = Dx and d_target = Dy are instantiated. The forward
cycle is x' = F(G(x)) = reco_source = g_source(g_target(source_input)).
The backward cycle is y' = G(F(y)) = reco_target = g_target(g_source
(target_input)).

The inputs to the adversarial model are the source and target data while the outputs
are the outputs of Dx and Dy and the reconstructed inputs, x' and y.' The identity
network is not used in this example due to the difference between the number
of channels of the grayscale image and color image. We use the recommended
loss weights of 1 1.0λ = and 2 10.0λ = for the GAN and cyclic consistency losses
respectively. Similar to GANs in the previous chapters, we use RMSprop with
a learning rate of 2e-4 and decay rate of 6e-8 for the optimizer of the discriminators.
The learning and decay rate for the adversarial is half of the discriminator's.

Listing 7.1.4, cyclegan-7.1.1.py shows us the CycleGAN builder in Keras:

def build_cyclegan(shapes,
 source_name='source',
 target_name='target',
 kernel_size=3,
 patchgan=False,
 identity=False
):
 """Build the CycleGAN

Chapter 7

[219]

 1) Build target and source discriminators
 2) Build target and source generators
 3) Build the adversarial network

 Arguments:
 shapes (tuple): source and target shapes
 source_name (string): string to be appended on dis/gen models
 target_name (string): string to be appended on dis/gen models
 kernel_size (int): kernel size for the encoder/decoder or dis/gen
 models
 patchgan (bool): whether to use patchgan on discriminator
 identity (bool): whether to use identity loss

 Returns:
 (list): 2 generator, 2 discriminator, and 1 adversarial models

 """

 source_shape, target_shape = shapes
 lr = 2e-4
 decay = 6e-8
 gt_name = "gen_" + target_name
 gs_name = "gen_" + source_name
 dt_name = "dis_" + target_name
 ds_name = "dis_" + source_name

 # build target and source generators
 g_target = build_generator(source_shape,
 target_shape,
 kernel_size=kernel_size,
 name=gt_name)
 g_source = build_generator(target_shape,
 source_shape,
 kernel_size=kernel_size,
 name=gs_name)
 print('---- TARGET GENERATOR ----')
 g_target.summary()
 print('---- SOURCE GENERATOR ----')
 g_source.summary()

 # build target and source discriminators
 d_target = build_discriminator(target_shape,
 patchgan=patchgan,

Cross-Domain GANs

[220]

 kernel_size=kernel_size,
 name=dt_name)
 d_source = build_discriminator(source_shape,
 patchgan=patchgan,
 kernel_size=kernel_size,
 name=ds_name)
 print('---- TARGET DISCRIMINATOR ----')
 d_target.summary()
 print('---- SOURCE DISCRIMINATOR ----')
 d_source.summary()

 optimizer = RMSprop(lr=lr, decay=decay)
 d_target.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 d_source.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 # freeze the discriminator weights in the adversarial model
 d_target.trainable = False
 d_source.trainable = False

 # build the computational graph for the adversarial model
 # forward cycle network and target discriminator
 source_input = Input(shape=source_shape)
 fake_target = g_target(source_input)
 preal_target = d_target(fake_target)
 reco_source = g_source(fake_target)

 # backward cycle network and source discriminator
 target_input = Input(shape=target_shape)
 fake_source = g_source(target_input)
 preal_source = d_source(fake_source)
 reco_target = g_target(fake_source)

 # if we use identity loss, add 2 extra loss terms
 # and outputs
 if identity:
 iden_source = g_source(source_input)
 iden_target = g_target(target_input)
 loss = ['mse', 'mse', 'mae', 'mae', 'mae', 'mae']
 loss_weights = [1., 1., 10., 10., 0.5, 0.5]
 inputs = [source_input, target_input]
 outputs = [preal_source,

Chapter 7

[221]

 preal_target,
 reco_source,
 reco_target,
 iden_source,
 iden_target]
 else:
 loss = ['mse', 'mse', 'mae', 'mae']
 loss_weights = [1., 1., 10., 10.]
 inputs = [source_input, target_input]
 outputs = [preal_source,
 preal_target,
 reco_source,
 reco_target]

 # build adversarial model
 adv = Model(inputs, outputs, name='adversarial')
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 adv.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 print('---- ADVERSARIAL NETWORK ----')
 adv.summary()

 return g_source, g_target, d_source, d_target, adv

We follow the training procedure in Algorithm 7.1.1 from the previous section.
Following listing shows the CycleGAN training. The minor difference between
this training from the vanilla GAN is there are two discriminators to be optimized.
However, there is only one adversarial model to optimize. For every 2000 steps,
the generators save the predicted source and target images. We'll use a batch size
of 32. We also tried a batch size of one, but the output quality is almost the same
and takes a longer amount of time to train (43 ms/image for a batch size of one vs.
3.6 ms/image for a batch size of 32 on an NVIDIA GTX 1060).

Listing 7.1.5, cyclegan-7.1.1.py shows us the CycleGAN training routine in Keras:

def train_cyclegan(models, data, params, test_params, test_generator):
 """ Trains the CycleGAN.

 1) Train the target discriminator
 2) Train the source discriminator
 3) Train the forward and backward cyles of adversarial networks

 Arguments:

Cross-Domain GANs

[222]

 models (Models): Source/Target Discriminator/Generator,
 Adversarial Model
 data (tuple): source and target training data
 params (tuple): network parameters
 test_params (tuple): test parameters
 test_generator (function): used for generating predicted target
 and source images
 """

 # the models
 g_source, g_target, d_source, d_target, adv = models
 # network parameters
 batch_size, train_steps, patch, model_name = params
 # train dataset
 source_data, target_data, test_source_data, test_target_data =
data

 titles, dirs = test_params

 # the generator image is saved every 2000 steps
 save_interval = 2000
 target_size = target_data.shape[0]
 source_size = source_data.shape[0]

 # whether to use patchgan or not
 if patch > 1:
 d_patch = (patch, patch, 1)
 valid = np.ones((batch_size,) + d_patch)
 fake = np.zeros((batch_size,) + d_patch)
 else:
 valid = np.ones([batch_size, 1])
 fake = np.zeros([batch_size, 1])

 valid_fake = np.concatenate((valid, fake))
 start_time = datetime.datetime.now()

 for step in range(train_steps):
 # sample a batch of real target data
 rand_indexes = np.random.randint(0, target_size,
size=batch_size)
 real_target = target_data[rand_indexes]

 # sample a batch of real source data
 rand_indexes = np.random.randint(0, source_size,

Chapter 7

[223]

size=batch_size)
 real_source = source_data[rand_indexes]
 # generate a batch of fake target data fr real source data
 fake_target = g_target.predict(real_source)

 # combine real and fake into one batch
 x = np.concatenate((real_target, fake_target))
 # train the target discriminator using fake/real data
 metrics = d_target.train_on_batch(x, valid_fake)
 log = "%d: [d_target loss: %f]" % (step, metrics[0])

 # generate a batch of fake source data fr real target data
 fake_source = g_source.predict(real_target)
 x = np.concatenate((real_source, fake_source))
 # train the source discriminator using fake/real data
 metrics = d_source.train_on_batch(x, valid_fake)
 log = "%s [d_source loss: %f]" % (log, metrics[0])

 # train the adversarial network using forward and backward
 # cycles. the generated fake source and target data attempts
 # to trick the discriminators
 x = [real_source, real_target]
 y = [valid, valid, real_source, real_target]
 metrics = adv.train_on_batch(x, y)
 elapsed_time = datetime.datetime.now() - start_time
 fmt = "%s [adv loss: %f] [time: %s]"
 log = fmt % (log, metrics[0], elapsed_time)
 print(log)
 if (step + 1) % save_interval == 0:
 if (step + 1) == train_steps:
 show = True
 else:
 show = False

 test_generator((g_source, g_target),
 (test_source_data, test_target_data),
 step=step+1,
 titles=titles,
 dirs=dirs,
 show=show)

 # save the models after training the generators
 g_source.save(model_name + "-g_source.h5")
 g_target.save(model_name + "-g_target.h5")

Cross-Domain GANs

[224]

Finally, before we can use the CycleGAN to build and train functions, we have
to perform some data preparation. The modules cifar10_utils.py and other_
utils.py load the CIFAR10 train and test data. Please refer to the source code
for details of these two files. After loading, the train and test images are converted
to grayscale to generate the source data and test source data.

Following listing shows how the CycleGAN is used to build and train a generator
network (g_target) for colorization of grayscale images. Since CycleGAN is
symmetric, we also build and train a second generator network (g_source) that
converts from color to grayscale. Two CycleGAN colorization networks were
trained. The first use discriminators with a scalar output similar to vanilla GAN.
The second uses a 2 × 2 PatchGAN.

Listing 7.1.6, cyclegan-7.1.1.py shows us the CycleGAN for colorization problem:

def graycifar10_cross_colorcifar10(g_models=None):
 """Build and train a CycleGAN that can do grayscale <--> color
 cifar10 images
 """

 model_name = 'cyclegan_cifar10'
 batch_size = 32
 train_steps = 100000
 patchgan = True
 kernel_size = 3
 postfix = ('%dp' % kernel_size) if patchgan else
('%d' % kernel_size)

 data, shapes = cifar10_utils.load_data()
 source_data, _, test_source_data, test_target_data = data
 titles = ('CIFAR10 predicted source images.',
 'CIFAR10 predicted target images.',
 'CIFAR10 reconstructed source images.',
 'CIFAR10 reconstructed target images.')
 dirs = ('cifar10_source-%s' % postfix, 'cifar10_target-%s'
% postfix)

 # generate predicted target(color) and source(gray) images
 if g_models is not None:
 g_source, g_target = g_models
 other_utils.test_generator((g_source, g_target),
 (test_source_data, test_target_
data),
 step=0,
 titles=titles,

Chapter 7

[225]

 dirs=dirs,
 show=True)
 return

 # build the cyclegan for cifar10 colorization
 models = build_cyclegan(shapes,
 "gray-%s" % postfix,
 "color-%s" % postfix,
 kernel_size=kernel_size,
 patchgan=patchgan)
 # patch size is divided by 2^n since we downscaled the input
 # in the discriminator by 2^n (ie. we use strides=2 n times)
 patch = int(source_data.shape[1] / 2**4) if patchgan else 1
 params = (batch_size, train_steps, patch, model_name)
 test_params = (titles, dirs)
 # train the cyclegan
 train_cyclegan(models,
 data,
 params,
 test_params,
 other_utils.test_generator)

Generator outputs of CycleGAN
Figure 7.1.9 shows the colorization results of CycleGAN. The source images are
from the test dataset. For comparison, we show the ground truth and the colorization
results using a plain autoencoder described in Chapter 3, Autoencoders. Generally, all
colorized images are perceptually acceptable. Overall, it seems that each colorization
technique has both its own pros and cons. All colorization methods are not consistent
with the right color of the sky and vehicle.

For example, the sky in the background of the plane (3rd row, 2nd column) is white.
The autoencoder got it right, but the CycleGAN thinks it is light brown or blue.
For the 6th row, 6th column, the boat on the dark sea had an overcast sky but was
colorized with blue sky and blue sea by autoencoder and blue sea and white sky
by CycleGAN without PatchGAN. Both predictions make sense in the real world.
Meanwhile, the prediction of CycleGAN with PatchGAN is similar to the ground
truth. On 2nd to the last row and 2nd column, no method was able to predict the
red color of the car. On animals, both flavors of CycleGAN have closer colors to
the ground truth.

Cross-Domain GANs

[226]

Since CycleGAN is symmetric, it also predicts the grayscale image given a color
image. Figure 7.1.10 shows the color to grayscale conversion performed by the two
CycleGAN variations. The target images are from the test dataset. Except for minor
differences in the grayscale shades of some images, the predictions are generally
accurate:

Figure 7.1.9: Colorization using different techniques. Shown are the ground truth, colorization using
autoencoder (Chapter 3, Autoencoders,), colorization using CycleGAN with a vanilla GAN discriminator,

and colorization using CycleGAN with PatchGAN discriminator. Best viewed in color. Original color photo
can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/blob/master/chapter7-cross-domain-gan/README.md.

Chapter 7

[227]

Figure 7.1.10: Color (from Figure 7.1.9) to the grayscale conversion of CycleGAN

The reader can run the image translation by using the pretrained models for
CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --cifar10_g_source=cyclegan_cifar10-g_source.h5
--cifar10_g_target=cyclegan_cifar10-g_target.h5

CycleGAN on MNIST and SVHN datasets
We're now going to tackle a more challenging problem. Suppose we use MNIST
digits in grayscale as our source data, and we want to borrow style from SVHN [1]
which is our target data. The sample data in each domain are shown in Figure 7.1.11.
We can reuse all the build and train functions for CycleGAN that were discussed in
the previous section to perform style transfer. The only difference is we have to add
routines for loading MNIST and SVHN data. SVHN dataset can be found at http://
ufldl.stanford.edu/housenumbers/.

Cross-Domain GANs

[228]

We introduce module mnist_svhn_utils.py to help us with this task. Listing 7.1.7
shows the initialization and training of the CycleGAN for cross-domain transfer.
The CycleGAN structure is same as in the previous section except that we use
a kernel size of 5 since the two domains are drastically different:

Figure 7.1.11: Two different domains with data that are not aligned. Original color photo can be
found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/blob/master/chapter7-cross-domain-gan/README.md.

Remember to install keras-contrib before using instance
normalization:
$ sudo pip3 install git+https://www.github.com/keras-
team/keras-contrib.git

Listing 7.1.7, cyclegan-7.1.1.py shows us the CycleGAN for cross-domain style
transfer between MNIST and SVHN:

def mnist_cross_svhn(g_models=None):
 """Build and train a CycleGAN that can do mnist <--> svhn
 """

 model_name = 'cyclegan_mnist_svhn'
 batch_size = 32
 train_steps = 100000
 patchgan = True
 kernel_size = 5
 postfix = ('%dp' % kernel_size) if patchgan else ('%d' % kernel_
size)

 data, shapes = mnist_svhn_utils.load_data()
 source_data, _, test_source_data, test_target_data = data

Chapter 7

[229]

 titles = ('MNIST predicted source images.',
 'SVHN predicted target images.',
 'MNIST reconstructed source images.',
 'SVHN reconstructed target images.')
 dirs = ('mnist_source-%s' % postfix, 'svhn_target-%s' % postfix)

 # genrate predicted target(svhn) and source(mnist) images
 if g_models is not None:
 g_source, g_target = g_models
 other_utils.test_generator((g_source, g_target),
 (test_source_data, test_
target_data),
 step=0,
 titles=titles,
 dirs=dirs,
 show=True)
 return

 # build the cyclegan for mnist cross svhn
 models = build_cyclegan(shapes,
 "mnist-%s" % postfix,
 "svhn-%s" % postfix,
 kernel_size=kernel_size,
 patchgan=patchgan)
 # patch size is divided by 2^n since we downscaled the input
 # in the discriminator by 2^n (ie. we use strides=2 n times)
 patch = int(source_data.shape[1] / 2**4) if patchgan else 1
 params = (batch_size, train_steps, patch, model_name)
 test_params = (titles, dirs)
 # train the cyclegan
 train_cyclegan(models,
 data,
 params,
 test_params,
 other_utils.test_generator)

The results for transferring the MNIST from the test dataset to SVHN are shown
in Figure 7.1.12. The generated images have the style of SVHN, but the digits are
not completely transferred. For example, on the 4th row, digits 3, 1, and 3 are stylized
by CycleGAN. However, on the 3rd row, digits 9, 6, and 6 are stylized as 0, 6, 01, 0, 65,
and 68 for the CycleGAN without and with PatchGAN respectively.

The results of the backward cycle are shown in Figure 7.1.13. In this case, the target
images are from the SVHN test dataset. The generated images have the style of
MNIST, but the digits are not correctly translated. For example, on the 1st row, the
digits 5, 2, and 210 are stylized as 7, 7, 8, 3, 3, and 1 for the CycleGAN without and
with PatchGAN respectively.

Cross-Domain GANs

[230]

In the case of PatchGAN, the output 1 is understandable given the predicted MNIST
digit is constrained to one digit. There are somehow correct predictions like in 2nd
row last 3 columns of the SVHN digits, 6, 3, and 4 are converted to 6, 3, and 6 by
CycleGAN without PatchGAN. However, the outputs on both flavors of CycleGAN
are consistently single digit and recognizable.

The problem exhibited in the conversion from MNIST to SVHN where a digit in
the source domain is translated to another digit in the target domain is called label
flipping [8]. Although the predictions of CycleGAN are cycle-consistent, they are
not necessarily semantic consistent. The meaning of digits is lost during translation.
To address this problem, Hoffman [8] introduced an improved CycleGAN called
CyCADA (Cycle-Consistent Adversarial Domain Adaptation). The difference is the
additional semantic loss term ensures that the prediction is not only cycle-consistent
but also sematic-consistent:

Figure 7.1.12: Style transfer of test data from the MNIST domain to SVHN. Original color photo can be found
on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md.

Chapter 7

[231]

Figure 7.1.13: Style transfer of test data from SVHN domain to MNIST. Original color photo can be found
on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md.

Cross-Domain GANs

[232]

Figure 7.1.14: Forward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target).
The reconstructed source is similar to the original source. Original color photo can be found on the book
GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/

master/chapter7-cross-domain-gan/README.md.

Chapter 7

[233]

Figure 7.1.15: The backward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target).
The reconstructed target is not entirely similar to the original target. Original color photo can be found on

the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/
blob/master/chapter7-cross-domain-gan/README.md.

In Figure 7.1.3, CycleGAN is described to be cycle consistent. In other words, given
source x, CycleGAN reconstructs the source in the forward cycle as x'. In addition,
given target y, CycleGAN reconstructs the target in the backward cycle as y'.

Cross-Domain GANs

[234]

Figure 7.1.14 shows CycleGAN reconstructing MNIST digits in the forward cycle.
The reconstructed MNIST digits are almost identical with the source MNIST digits.
Figure 7.1.15 shows the CycleGAN reconstructing SVHN digits in the backward
cycle. Many target images are reconstructed. Some digits are clearly the same
such as the 2nd row last 2 columns (3 and 4). While some are the same but blurred
like 1st row first 2 columns (5 and 2). Some digits are transformed to another digit
although the style remains like 2nd row first two columns (from 33 and 6 to 1 and
an unrecognizable digit).

On a personal note, I encourage you to run the image translation by using the
pretrained models of CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --mnist_svhn_g_source=cyclegan_mnist_svhn-g_
source.h5 --mnist_svhn_g_target=cyclegan_mnist_svhn-g_target.h5

Conclusion
In this chapter, we've discussed CycleGAN as an algorithm that can be used for
image translation. In CycleGAN, the source and target data are not necessarily
aligned. We demonstrated two examples, grayscale ↔ color, and MNIST ↔ SVHN.
Though there are many other possible image translations that CycleGAN can
perform.

In the next chapter, we'll embark on another type of generative model, Variational
AutoEncoders (VAEs). VAEs have a similar objective of learning how to generate
new images (data). They focus on learning the latent vector modeled as a Gaussian
distribution. We'll demonstrate other similarities in the problem being addressed
by GANs in the form of conditional VAEs and the disentangling of latent
representations in VAEs.

Chapter 7

[235]

References
1.	 Yuval Netzer and others. Reading Digits in Natural Images with Unsupervised

Feature Learning. NIPS workshop on deep learning and unsupervised
feature learning. Vol. 2011. No. 2. 2011(https://www-cs.stanford.
edu/~twangcat/papers/nips2011_housenumbers.pdf).

2.	 Zhu, Jun-Yan and others. Unpaired Image-to-Image Translation Using Cycle-
Consistent Adversarial Networks. 2017 IEEE International Conference on
Computer Vision (ICCV). IEEE, 2017 (http://openaccess.thecvf.
com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_
Translation_ICCV_2017_paper.pdf).

3.	 Phillip Isola and others. Image-to-Image Translation with Conditional
Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017 (http://openaccess.thecvf.com/
content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_
CVPR_2017_paper.pdf).

4.	 Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
arXiv preprint arXiv:1411.1784, 2014(https://arxiv.org/pdf/1411.1784.
pdf).

5.	 Xudong Mao and others. Least Squares Generative Adversarial Networks.
2017 IEEE International Conference on Computer Vision (ICCV). IEEE,
2017(http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_
Least_Squares_Generative_ICCV_2017_paper.pdf).

6.	 Chuan Li and Michael Wand. Precomputed Real-Time Texture Synthesis
with Markovian Generative Adversarial Networks. European Conference
on Computer Vision. Springer, Cham, 2016(https://arxiv.org/
pdf/1604.04382.pdf).

7.	 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. International Conference on
Medical image computing and computer-assisted intervention. Springer,
Cham, 2015(https://arxiv.org/pdf/1505.04597.pdf).

8.	 Judy Hoffman and others. CyCADA: Cycle-Consistent Adversarial Domain
Adaptation. arXiv preprint arXiv:1711.03213, 2017(https://arxiv.org/
pdf/1711.03213.pdf).

https://www-cs.stanford.edu/~twangcat/papers/nips2011_housenumbers.pdf
https://www-cs.stanford.edu/~twangcat/papers/nips2011_housenumbers.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
https://arxiv.org/pdf/1604.04382.pdf
https://arxiv.org/pdf/1604.04382.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1711.03213.pdf
https://arxiv.org/pdf/1711.03213.pdf

[237]

Variational Autoencoders
(VAEs)

Similar to Generative Adversarial Networks (GANs) that we've discussed in
the previous chapters, Variational Autoencoders (VAEs) [1] belong to the family
of generative models. The generator of VAE is able to produce meaningful outputs
while navigating its continuous latent space. The possible attributes of the decoder
outputs are explored through the latent vector.

In GANs, the focus is on how to arrive at a model that approximates the input
distribution. VAEs attempt to model the input distribution from a decodable
continuous latent space. This is one of the possible underlying reasons why
GANs are able to generate more realistic signals when compared to VAEs. For
example, in image generation, GANs are able to produce more realistic looking
images while VAEs in comparison generate images that are less sharp.

Within VAEs, the focus is on the variational inference of latent codes.
Therefore, VAEs provide a suitable framework for both learning and efficient
Bayesian inference with latent variables. For example, VAEs with disentangled
representations enable latent code reuse for transfer learning.

In terms of structure, VAEs bear a resemblance to an autoencoder. They are
also made up of an encoder (also known as recognition or inference model)
and a decoder (also known as a generative model). Both VAEs and autoencoders
attempt to reconstruct the input data while learning the latent vector. However,
unlike autoencoders, the latent space of VAEs is continuous, and the decoder itself
is used as a generative model.

Variational Autoencoders (VAEs)

[238]

In the same line of discussions on GANs that we discussed in the previous chapters,
the VAEs decoder can also be conditioned. For example, in the MNIST dataset, we're
able to specify the digit to produce given a one-hot vector. This class of conditional
VAE is called CVAE [2]. VAE latent vectors can also be disentangled by including
a regularizing hyperparameter on the loss function. This is called β -VAE [5]. For
example, within MNIST, we're able to isolate the latent vector that determines the
thickness or tilt angle of each digit.

The goal of this chapter is to present:

•	 The principles of VAEs
•	 An understanding of the reparameterization trick that facilitates the use

of stochastic gradient descent on VAE optimization
•	 The principles of conditional VAE (CVAE) and β -VAE
•	 An understanding of how to implement VAEs within the Keras library

Principles of VAEs
In a generative model, we're often interested in approximating the true distribution
of our inputs using neural networks:

()~x P xθ (Equation 8.1.1)

In the preceding equation, θ are the parameters determined during training. For
example, in the context of the celebrity faces dataset, this is equivalent to finding
a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution
can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested
in finding (),P x zθ

, a joint distribution between inputs, x, and the latent variables, z.
The latent variables are not part of the dataset but instead encode certain properties
observable from inputs. In the context of celebrity faces, these might be facial
expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset,
the latent variables may represent the digit and writing styles.

(),P x zθ is practically a distribution of input data points and their attributes.
Pθ(x) can be computed from the marginal distribution:

() (),P x P x z dzθ θ= ∫ (Equation 8.1.2)

Chapter 8

[239]

In other words, considering all of the possible attributes, we end up with the
distribution that describes the inputs. In celebrity faces, if we consider all the facial
expressions, hairstyles, hair colors, gender, the distribution describing the celebrity
faces is recovered. In the MNIST dataset, if we consider all of the possible digits,
writing styles, and so on, we end up with the distribution of handwritten digits.

The problem is Equation 8.1.2 is intractable. the equation does not have an analytic
form or an efficient estimator. It cannot be differentiated with respect to its
parameters. Therefore, optimization by a neural network is not feasible.

Using Bayes theorem, we can find an alternative expression for Equation 8.1.2:

() () ()|P x P x z P z dzθ θ= ∫ (Equation 8.1.3)

P(z) is a prior distribution over z. It is not conditioned on any observations. If z is
discrete and ()|P x zθ

 is a Gaussian distribution, then ()P xθ is a mixture of Gaussians.
If z is continuous, ()P xθ is an infinite mixture of Gaussians.

In practice, if we try to build a neural network to approximate ()|P x zθ
 without

a suitable loss function, it will just ignore z and arrive at a trivial solution ()|P x zθ =
()P xθ . Therefore, Equation 8.1.3 does not provide us with a good estimate of ()P xθ .

Alternatively, Equation 8.1.2 can also be expressed as:

() () ()|P x P z x P x dzθ θ= ∫ (Equation 8.1.4)

However, ()|P z xθ
 is also intractable. The goal of a VAEs is to find a tractable

distribution that closely estimates ()|P z xθ
.

Variational inference
In order to make ()|P z xθ tractable, VAE introduces the variational inference model
(an encoder):

() ()| |Q z x P z xφ θ≈ (Equation 8.1.5)

()|Q z xφ provides a good estimate of ()|P z xθ . It is both parametric and tractable.
()|Q z xφ can be approximated by deep neural networks by optimizing the

parameters φ .

Variational Autoencoders (VAEs)

[240]

Typically, ()|Q z xφ is chosen to be a multivariate Gaussian:

() () ()()()| ; ,Q z x z x diag xθ µ σ= N (Equation 8.1.6)

Both mean, ()xµ , and standard deviation, ()xσ , are computed by the encoder neural
network using the input data points. The diagonal matrix implies that the elements
of z are independent.

Core equation
The inference model ()|Q z xφ generates latent vector z from input x. ()|Q z xφ is like
the encoder in an autoencoder model. On the other hand, ()|P x zθ reconstructs the
input from the latent code z. ()|P x zθ acts like the decoder in an autoencoder model.
To estimate ()P xθ , we must identify its relationship with ()|Q z xφ and ()|P x zθ .

If ()|Q z xφ is an estimate of ()|P z xθ , the Kullback-Leibler (KL) divergence
determines the distance between these two conditional densities:

() ()() () ()~| || | log | log |KL z QD Q z x P z x Q z x P z xφ θ φ θ
 = − E (Equation 8.1.7)

Using Bayes theorem,

() () ()
()

P x z P z
P z x

P x
θ θ

θ
θ

= (Equation 8.1.8)

in Equation 8.1.7,

() ()() () () () ()~| || | log | log | log logKL z QD Q z x P z x Q z x P x z P z P xφ θ φ θ θ θ
 = − − + E (Equation 8.1.9)

()log P xθ can be taken out the expectation since it is not dependent
on ~z Q . Rearranging the preceding equation and recognizing that

() () () ()()~ log | log |z Q KLQ z x P z D Q z x P zφ θ φ θ
 − = E :

() () ()() () () ()()~log | || | log | | ||KL z Q KLP x D Q z x P z x P x z D Q z x P zθ φ θ θ φ θ
 − = − E (Equation 8.1.10)

Chapter 8

[241]

Equation 8.1.10 is the core of VAEs. The left-hand side is the term ()P xθ that we
are maximizing less the error due to the distance of ()|Q z xφ from the true ()|P z xθ .
We can recall that the logarithm does not change the location of maxima (or
minima). Given an inference model that provides a good estimate of ()|P z xθ ,

() ()()| || |KLD Q z x P z xφ θ is approximately zero. The first term, ()|P x zθ , on the right-
hand side resembles a decoder that takes samples from the inference model to
reconstruct the input. The second term is another distance. This time it's between
()|Q z xφ and the prior ()P zθ .

The left side of Equation 8.1.10 is also known as the variational lower bound or
evidence lower bound (ELBO). Since the KL is always positive, ELBO is the lower
bound of ()log P xθ . Maximizing ELBO by optimizing the parameters φ and θ of
the neural network means that:

•	 () ()()| || | 0KLD Q z x P z xφ θ → or the inference model is getting better in encoding
the attributes of x in z

•	 ()log |P x zθ on the right-hand side of Equation 8.1.10 is maximized or the
decoder model is getting better in reconstructing x from the latent vector z

Optimization
The right-hand side of Equation 8.1.10 has two important bits of information
about the loss function of VAEs. The decoder term ()~ log |z Q P x zθ

  E means that the
generator takes z samples from the output of the inference model to reconstruct the
inputs. Maximizing this term implies that we minimize the Reconstruction Loss, RL .
If the image (data) distribution is assumed to be Gaussian, then MSE can be used.
If every pixel (data) is considered a Bernoulli distribution, then the loss function is
a binary cross entropy.

The second term, () ()()| ||KLD Q z x P zφ θ− , turns out to be straightforward to evaluate.
From Equation 8.1.6, Qφ is a Gaussian distribution. Typically, () () ()0,P z P z Iθ = = N
is also a Gaussian with zero mean and standard deviation equal to 1.0. The KL
term simplifies to:

() ()() () () ()()2 2 2

1

1| || 1 log
2

J
KL j j jj
D Q z x P zφ θ σ µ σ

=
− = + − −∑ (Equation 8.1.11)

Where J is the dimensionality of z. Both jµ and jσ are functions of x computed
through the inference model. To maximize KLD− , 1jσ → and 0jµ → . The choice
of () ()0,P z I= N stems from the property of isotropic unit Gaussian which can be
morphed to an arbitrary distribution given a suitable function. From Equation 8.1.11,
the KL Loss KLL is simply .

Variational Autoencoders (VAEs)

[242]

For example, it was previously [6] demonstrated that an isotropic
Gaussian could be morphed into a ring-shaped distribution using
the function () 10

z zg z z= + .

Readers can further explore the theory as presented in Luc Devroye's,
Sample-Based Non-Uniform Random Variate Generation [7].

In summary, the VAE loss function is defined as:

VAE R KL= +L L L (Equation 8.1.12)

Reparameterization trick

Figure 8.1.1: A VAE network with and without the reparameterization trick

On the left side of the preceding figure shows the VAE network. The encoder takes
the input x, and estimates the mean, µ , and the standard deviation, σ , of the
multivariate Gaussian distribution of the latent vector z. The decoder takes samples
from the latent vector z to reconstruct the input as x� . This seems straightforward
until the gradient updates happen during backpropagation.

Backpropagation gradients will not pass through the stochastic Sampling block.
While it's fine to have stochastic inputs for neural networks, it's not possible for the
gradients to go through a stochastic layer.

Chapter 8

[243]

The solution to this problem is to push out the Sampling process as the input
as shown on the right side of Figure 8.1.1. Then, compute the sample as:

Sample µ σ= +∈ (Equation 8.1.13)

If ∈ and σ are expressed in vector format, then ∈ σ is element-wise multiplication.
Using Equation 8.1.13, it appears as if sampling is directly coming from the
latent space as originally intended. This technique is better known as the
Reparameterization Trick.

With Sampling now happening at the input, the VAE network can be trained
using the familiar optimization algorithms such as SGD, Adam, or RMSProp.

Decoder testing
After training the VAE network, the inference model including the addition and
multiplication operator can be discarded. To generate new meaningful outputs,
samples are taken from the Gaussian distribution used in generating ∈ . Following
figure shows us how to test the decoder:

Figure 8.1.2: Decoder testing setup

Variational Autoencoders (VAEs)

[244]

VAEs in Keras
The structure of VAE bears a resemblance to a typical autoencoder. The
difference is mainly on the sampling of the Gaussian random variables in the
reparameterization trick. Listing 8.1.1 shows the encoder, decoder, and VAE which
are implemented using MLP. This code has also been contributed to the official
Keras GitHub repository. For simplicity of the discussion, the latent vector z is 2-dim.

The encoder is just a two-layer MLP with the second layer generating the mean and
log variance. The use of log variance is for simplicity in the computation of KL Loss
and reparameterization trick. The third output of the encoder is the sampling of z
using the reparameterization trick. We should note that in the sampling function,

2 20.5loge σ σ σ= = since 0σ> given that it's the standard deviation of the Gaussian
distribution.

The decoder is also a two-layer MLP that takes samples of z to approximate
the inputs. Both the encoder and the decoder use an intermediate dimension
with a size of 512.

The VAE network is simply both the encoder and the decoder joined together.
Figures 8.1.3 to 8.1.5 show the encoder, decoder, and VAE models. The loss function
is the sum of both the Reconstruction Loss and KL Loss. The VAE network has good
results on the default Adam optimizer. The total number of parameters of the VAE
network is 807,700.

The Keras code for VAE MLP has pretrained weights. To test, we need to run:

$ python3 vae-mlp-mnist-8.1.1.py --weights=vae_mlp_mnist.h5

The complete code can be found on the following link: https://
github.com/PacktPublishing/Advanced-Deep-Learning-
with-Keras.

Listing 8.1.1, vae-mlp-mnist-8.1.1.py shows us the Keras code of VAE using MLP
layers:

reparameterization trick
instead of sampling from Q(z|X), sample eps = N(0,I)
z = z_mean + sqrt(var)*eps
def sampling(args):
 z_mean, z_log_var = args

 batch = K.shape(z_mean)[0]
 # K is the keras backend
 dim = K.int_shape(z_mean)[1]
 # by default, random_normal has mean=0 and std=1.0

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 8

[245]

 epsilon = K.random_normal(shape=(batch, dim))
 return z_mean + K.exp(0.5 * z_log_var) * epsilon

MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (original_dim,)
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50

VAE model = encoder + decoder
build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)

z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean,
z_log_var])
instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)

build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)

instantiate vae model

Variational Autoencoders (VAEs)

[246]

outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 help_ = "Load h5 model trained weights"
 parser.add_argument("-w", "--weights", help=help_)
 help_ = "Use mse loss instead of binary cross entropy (default)"
 parser.add_argument("-m",
 "--mse",
 help=help_, action='store_true')
 args = parser.parse_args()
 models = (encoder, decoder)
 data = (x_test, y_test)
 # VAE loss = mse_loss or xent_loss + kl_loss
 if args.mse:
 reconstruction_loss = mse(inputs, outputs)
 else:
 reconstruction_loss = binary_crossentropy(inputs,
 outputs)
 reconstruction_loss *= original_dim
 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
 kl_loss = K.sum(kl_loss, axis=-1)
 kl_loss *= -0.5
 vae_loss = K.mean(reconstruction_loss + kl_loss)
 vae.add_loss(vae_loss)
 vae.compile(optimizer='adam')
 vae.summary()
 plot_model(vae,
 to_file='vae_mlp.png',
 show_shapes=True)

 if args.weights:
 vae = vae.load_weights(args.weights)
 else:
 # train the autoencoder
 vae.fit(x_train,
 epochs=epochs,
 batch_size=batch_size,
 validation_data=(x_test, None))
 vae.save_weights('vae_mlp_mnist.h5')

 plot_results(models,
 data,
 batch_size=batch_size,
 model_name="vae_mlp")

Chapter 8

[247]

Figure 8.1.3: The encoder models of VAE MLP

Figure 8.1.4: The decoder model of VAE MLP

Figure 8.1.5: The VAE model using MLP

Variational Autoencoders (VAEs)

[248]

Figure 8.1.6 shows the continuous space of latent vector after 50 epochs using plot_
results(). For simplicity, the function is not shown here but can be found in the
rest of the code of vae-mlp-mnist-8.1.1.py. The function plots two images, the
test dataset labels (Figure 8.1.6) and the sample generated digits (Figure 8.1.7) both
as a function of z. Both plots demonstrate how the latent vector determines the
attributes of the generated digits.

Navigating through the continuous space will always result in an output that bears
a resemblance to the MNIST digits. For example, the region of digit 9 is close to
the region of digit 7. Moving from 9 near the center to the left morphs the digit
to 7. Moving from the center downward changes the generated digits from 3 to 8
and finally to 1. The morphing of the digits is more evident in Figure 8.1.7 which
is another way of interpreting Figure 8.1.6.

In Figure 8.1.7, instead of colorbar, the generator output is displayed. The
distribution of digits in the latent space is shown. It can be observed that all the
digits are represented. Since the distribution is dense near the center, the change is
rapid in the middle and slow as the mean values get bigger. We need to remember
that Figure 8.1.7 is a reflection of Figure 8.1.6. For example, digit 0 is on the top right
quadrant on both figures while digit 1 is on the lower right quadrant.

There are some unrecognizable digits in Figure 8.1.7, especially on the top left
quadrant. From the following figure, it can be observed that this region is mostly
empty and far away from the center:

Figure 8.1.6: The latent vector mean values for the test dataset (VAE MLP). The colorbar shows the
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository:
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Chapter 8

[249]

Figure 8.1.7: The digits generated as a function of latent vector mean values (VAE MLP).
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.6.

Using CNNs for VAEs
In the original paper Auto-encoding Variational Bayes [1], the VAE network was
implemented using MLP, which is similar to what we covered in the previous
section. In this section, we'll demonstrate that using a CNN will result in a significant
improvement in the quality of the digits produced and a remarkable reduction in the
number of parameters down to 134,165.

Listing 8.1.3 shows the encoder, decoder, and VAE network. This code was also
contributed to the official Keras GitHub repository. For conciseness, some lines
of code that are similar to the MLP are no longer shown. The encoder is made of two
layers of CNNs and two layers of MLPs in order to generate the latent code. The
encoder output structure is similar to the MLP implementation seen in the previous
section. The decoder is made up of one layer of MLP and three layers of transposed
CNNs. Figures 8.1.8 to 8.1.10 show the encoder, decoder, and VAE models. For VAE
CNN, RMSprop will result in a lower loss than Adam.

Variational Autoencoders (VAEs)

[250]

The Keras code for VAE CNN has pre-trained weights. To test, we need to run:

$ python3 vae-cnn-mnist-8.1.2.py --weights=vae_cnn_mnist.h5

Listing 8.1.3, vae-cnn-mnist-8.1.2.py shows us the Keras code of VAE using
CNN layers:

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

VAE mode = encoder + decoder
build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

for i in range(2):
 filters *= 2
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

shape info needed to build decoder model
shape = K.int_shape(x)

generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input
note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean,
z_log_var])

Chapter 8

[251]

instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_cnn_encoder.png', show_shapes=True)

build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(latent_
inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)
 filters //= 2

outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_cnn_decoder.png', show_shapes=True)

instantiate vae model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')

Variational Autoencoders (VAEs)

[252]

Figure 8.1.8: The encoder of VAE CNN

Figure 8.1.9: The decoder of VAE CNN

Chapter 8

[253]

Figure 8.1.10: The VAE model using CNNs

Figure 8.1.11: The latent vector mean values for the test dataset (VAE CNN). The colorbar shows the
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository:
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://gitHub.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Variational Autoencoders (VAEs)

[254]

Preceding figure shows the continuous latent space of a VAE using the CNN
implementation after 30 epochs. The region where each digit is assigned may
be different, but the distribution is roughly the same. Following figure shows
us the output of the generative model. Qualitatively, there are fewer digits that
are ambiguous as compared to Figure 8.1.7 with the MLP implementation:

Figure 8.1.12: The digits generated as a function of latent vector mean values (VAE CNN).
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.11.

Conditional VAE (CVAE)
Conditional VAE [2] is similar to the idea of CGAN. In the context of the MNIST
dataset, if the latent space is randomly sampled, VAE has no control over which
digit will be generated. CVAE is able to address this problem by including
a condition (a one-hot label) of the digit to produce. The condition is imposed
on both the encoder and decoder inputs.

Formally, the core equation of VAE in Equation 8.1.10 is modified to include the
condition c:

Chapter 8

[255]

() () ()() () () ()()~log | | , || | , log | , | , || |KL z Q KLP x c D Q z x c P z x c P x z c D Q z x c P z cθ φ θ θ φ θ
 − = − E (Equation 8.2.1)

Similar to VAEs, Equation 8.2.1 means that if we want to maximize the output
conditioned on c, ()|P x cθ

, then the two loss terms must be minimized:

•	 Reconstruction loss of the decoder given both the latent vector and the
condition.

•	 KL loss between the encoder given both the latent vector and the condition
and the prior distribution given the condition. Similar to a VAE, we typically
choose () () ()| | 0,P z c P z c Iθ = = N .

Listing 8.2.1, cvae-cnn-mnist-8.2.1.py shows us the Keras code of CVAE using
CNN layers. In the code that is highlighted showcases the changes made to support
CVAE:

compute the number of labels

num_labels = len(np.unique(y_train))

network parameters

input_shape = (image_size, image_size, 1)

label_shape = (num_labels,)

batch_size = 128

kernel_size = 3

filters = 16

latent_dim = 2

epochs = 30

VAE model = encoder + decoder

build encoder model

inputs = Input(shape=input_shape, name='encoder_input')

y_labels = Input(shape=label_shape, name='class_labels')

x = Dense(image_size * image_size)(y_labels)

x = Reshape((image_size, image_size, 1))(x)

x = keras.layers.concatenate([inputs, x])

for i in range(2):

 filters *= 2

 x = Conv2D(filters=filters,

 kernel_size=kernel_size,

 activation='relu',

 strides=2,

 padding='same')(x)

shape info needed to build decoder model

Variational Autoencoders (VAEs)

[256]

shape = K.int_shape(x)

generate latent vector Q(z|X)

x = Flatten()(x)

x = Dense(16, activation='relu')(x)

z_mean = Dense(latent_dim, name='z_mean')(x)

z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input

note that "output_shape" isn't necessary with the TensorFlow backend

z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean,
z_log_var])

instantiate encoder model

encoder = Model([inputs, y_labels], [z_mean, z_log_var, z],
name='encoder')

encoder.summary()

plot_model(encoder, to_file='cvae_cnn_encoder.png', show_shapes=True)

build decoder model

latent_inputs = Input(shape=(latent_dim,), name='z_sampling')

x = keras.layers.concatenate([latent_inputs, y_labels])

x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(x)

x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):

 x = Conv2DTranspose(filters=filters,

 kernel_size=kernel_size,

 activation='relu',

 strides=2,

 padding='same')(x)

 filters //= 2

outputs = Conv2DTranspose(filters=1,

 kernel_size=kernel_size,

 activation='sigmoid',

 padding='same',

 name='decoder_output')(x)

instantiate decoder model

decoder = Model([latent_inputs, y_labels], outputs, name='decoder')

decoder.summary()

plot_model(decoder, to_file='cvae_cnn_decoder.png', show_shapes=True)

Chapter 8

[257]

instantiate vae model

outputs = decoder([encoder([inputs, y_labels])[2], y_labels])

cvae = Model([inputs, y_labels], outputs, name='cvae')

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 help_ = "Load h5 model trained weights"

 parser.add_argument("-w", "--weights", help=help_)

 help_ = "Use mse loss instead of binary cross entropy (default)"

 parser.add_argument("-m", "--mse", help=help_, action='store_
true')

 help_ = "Specify a specific digit to generate"

 parser.add_argument("-d", "--digit", type=int, help=help_)

 help_ = "Beta in Beta-CVAE. Beta > 1. Default is 1.0 (CVAE)"

 parser.add_argument("-b", "--beta", type=float, help=help_)

 args = parser.parse_args()

 models = (encoder, decoder)

 data = (x_test, y_test)

 if args.beta is None or args.beta < 1.0:

 beta = 1.0

 print("CVAE")

 model_name = "cvae_cnn_mnist"

 else:

 beta = args.beta

 print("Beta-CVAE with beta=", beta)

 model_name = "beta-cvae_cnn_mnist"

 # VAE loss = mse_loss or xent_loss + kl_loss

 if args.mse:

 reconstruction_loss = mse(K.flatten(inputs),
K.flatten(outputs))

 else:

 reconstruction_loss = binary_crossentropy(K.flatten(inputs),

 K.flatten(outputs))

 reconstruction_loss *= image_size * image_size

 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)

 kl_loss = K.sum(kl_loss, axis=-1)

 kl_loss *= -0.5 * beta

 cvae_loss = K.mean(reconstruction_loss + kl_loss)

 cvae.add_loss(cvae_loss)

 cvae.compile(optimizer='rmsprop')

Variational Autoencoders (VAEs)

[258]

 cvae.summary()

 plot_model(cvae, to_file='cvae_cnn.png', show_shapes=True)

 if args.weights:

 cvae = cvae.load_weights(args.weights)

 else:

 # train the autoencoder

 cvae.fit([x_train, to_categorical(y_train)],

 epochs=epochs,

 batch_size=batch_size,

 validation_data=([x_test, to_categorical(y_test)],
None))

 cvae.save_weights(model_name + '.h5')

 if args.digit in range(0, num_labels):

 digit = np.array([args.digit])

 else:

 digit = np.random.randint(0, num_labels, 1)

 print("CVAE for digit %d" % digit)

 y_label = np.eye(num_labels)[digit]

 plot_results(models,

 data,

 y_label=y_label,

 batch_size=batch_size,

 model_name=model_name)

Chapter 8

[259]

Figure 8.2.1: The encoder in CVAE CNN. The input is now made of the
concatenation of the VAE input and a conditioning label.

Variational Autoencoders (VAEs)

[260]

Figure 8.2.2: The decoder in CVAE CNN. The input is now made of the concatenation
of the z sampling and a conditioning label.

Figure 8.2.3: The CVAE model using a CNN. The input is now made of a VAE input and a conditioning label.

Chapter 8

[261]

Implementing CVAE requires a few modifications in the code of the VAE. For the
CVAE, the VAE CNN implementation is used. Listing 8.2.1 highlights the changes
made to the original code of VAE for MNIST digits. The encoder input is now a
concatenation of original input image and its one-hot label. The decoder input is
now a combination of the latent space sampling and the one-hot label of the image it
should generate. The total number of parameters is 174, 437. The codes related to β
-VAE will be discussed in the next section of this chapter.

There are no changes in the loss function. However, the one-hot labels are supplied
during training, testing, and plotting of results. Figures 8.2.1 to 8.2.3 show us the
encoder, decoder, and CVAE models. The role of the conditioning label in the form
of a one-hot vector is indicated.

Figure 8.2.4: The latent vector mean values for the test dataset (CVAE CNN). The colorbar shows the
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository:
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://gitHub.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Variational Autoencoders (VAEs)

[262]

Figure 8.2.5: Digits 0 to 5 generated as a function of latent vector mean values and one-hot label
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4.

Chapter 8

[263]

Figure 8.2.6: Digits 6 to 9 generated as a function of latent vector mean values and one-hot label
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4.

In Figure 8.2.4, the distribution of mean per label is shown after 30 epochs. Unlike in
both Figures 8.1.6 and 8.1.11 in the previous sections, each label is not concentrated
on a region but distributed across the plot. This is expected since every sampling
in the latent space should generate a specific digit. Navigating the latent space
changes the attribute of that specific digit. For example, if the digit specified is 0,
then navigating the latent space will still produce a 0 but the attributes, such as tilt
angle, thickness, and other writing style aspects will be different.

These changes are more clearly shown in Figures 8.2.5 and 8.2.6. For ease of
comparison, the range of values for the latent vector is the same as in Figure 8.2.4.
Using the pretrained weights, a digit (for example, 0) can be generated by executing
the command:

$ python3 cvae-cnn-mnist-8.2.1.py --weights=cvae_cnn_mnist.h5 --digit=0

Variational Autoencoders (VAEs)

[264]

In Figures 8.2.5 and 8.2.6, it can be noticed that the width and roundness
(if applicable) of each digit change as z[0] is traced from left to right. Meanwhile,
the tilt angle and roundness (if applicable) of each digit change as z[1] is navigated
from top to bottom. As we move away from the center of the distribution, the
image of the digit starts to degrade. This is expected since the latent space is a circle.

Other noticeable variations in attributes may be digit specific. For example,
the horizontal stroke (arm) for digit 1 becomes visible in the upper left quadrant.
The horizontal stroke (crossbar) for digit 7 can be seen in the right quadrants only.

β -VAE: VAE with disentangled latent
representations
In Chapter 6, Disentangled Representation GANs, the concept, and importance of
the disentangled representation of latent codes were discussed. We can recall
that a disentangled representation is where single latent units are sensitive to
changes in single generative factors while being relatively invariant to changes
in other factors [3]. Varying a latent code results to changes in one attribute of
the generated output while the rest of the properties remain the same.

In the same chapter, InfoGANs [4] demonstrated to us that in the MNIST dataset,
it is possible to control which digit to generate and the tilt and thickness of writing
style. Observing the results in the previous section, it can be noticed that the VAE
is intrinsically disentangling the latent vector dimensions to a certain extent. For
example, looking at digit 8 in Figure 8.2.6, navigating z[1] from top to bottom
decreases the width and roundness while rotating the digit clockwise. Increasing
z[0] from left to right also decreases the width and roundness while rotating the digit
counterclockwise. In other words, z[1] controls the clockwise rotation, z[0] affects the
counterclockwise rotation, and both of them alter the width and roundness.

In this section, we'll demonstrate that a simple modification in the loss function of
VAE forces the latent codes to disentangle further. The modification is the positive
constant weight, 1β> , acting as a regularizer on the KL loss:

VAE R KLβ β− = +L L L (Equation 8.3.1)

This variation of VAE is called β -VAE [5]. The implicit effect of β is a tighter
standard deviation. In other words, β forces the latent codes in the posterior
distribution, ()|Q z xφ to be independent.

Chapter 8

[265]

It is straightforward to implement β -VAE. For example, for the CVAE from the
previous, the required modification is the extra beta factor in kl_loss.

 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
 kl_loss = K.sum(kl_loss, axis=-1)
 kl_loss *= -0.5 * beta

CVAE is a special case of β -VAE with 1β = . Everything else is the same. However,
determining the value of β requires some trial and error. There must be a careful
balance between the reconstruction error and regularization for latent codes
independence. The disentanglement is maximized at around . When the
value of 8β> , the β -VAE is forced to learn one disentangled representation only
while muting the other latent dimension:

Figure 8.3.1: The latent vector mean values for the test dataset (β -VAE with 7β =)
Color images can be found on the book GitHub repository: https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Variational Autoencoders (VAEs)

[266]

Figures 8.3.1 and 8.3.2 show the latent vector means for β -VAE with 7β = and 10β = .
With 7β = , the distribution has a smaller standard deviation when compared to
CVAE. With 10β = , there is only the latent code that is learned. The distribution
is practically shrunk to 1D with the first latent code z[0] ignored by the encoder
and decoder:

Figure 8.3.2: The latent vector mean values for the test dataset (β -VAE with)
Color images can be found on the book GitHub repository: https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/tree/master/chapter8-vae.

These observations are reflected in Figure 8.3.3. β -VAE with 7β = has two latent
codes that are practically independent. z[0] determines the tilt of the writing style.
Meanwhile, z[1] specifies the width and roundness (if applicable) of the digits.
For β -VAE with 10β = , z[0] is muted. Increasing z[0] does not alter the digit in
a significant way. z[1] determines the tilt angle and width of the writing style.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Chapter 8

[267]

Figure 8.3.3: Digits 0 to 3 generated as a function of latent vector mean values and one-hot label
(β -VAE 1,7 10andβ =). For ease of interpretation, the range of values for the mean

is similar to Figure 8.3.1.

Variational Autoencoders (VAEs)

[268]

The Keras code for β -VAE has pre-trained weights. To test β -VAE with 7β =
generating digit 0, we need to run:

$ python3 cvae-cnn-mnist-8.2.1.py --beta=7 --weights=beta-cvae_cnn_mnist.
h5 --digit=0

Conclusion
In this chapter, we've covered the principles of variational autoencoders (VAEs).
As we learned in the principles of VAEs, they bear a resemblance to GANs in the
aspect of both attempt to create synthetic outputs from latent space. However, it can
be noticed that the VAE networks are much simpler and easier to train compared to
GANs. It's becoming clear how conditional VAE and β -VAE are similar in concept to
conditional GAN and disentangled representation GAN respectively.

VAEs have an intrinsic mechanism to disentangle the latent vectors. Therefore,
building a β -VAE is straightforward. We should note however that interpretable
and disentangled codes are important in building intelligent agents.

In the next chapter, we're going to focus on Reinforcement learning. Without any
prior data, an agent learns by interacting with its world. We'll discuss how the
agent can be rewarded for correct actions and punished for the wrong ones.

References
1.	 Diederik P. Kingma and Max Welling. Auto-encoding Variational Bayes. arXiv

preprint arXiv:1312.6114, 2013(https://arxiv.org/pdf/1312.6114.pdf).
2.	 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output

Representation Using Deep Conditional Generative Models. Advances in
Neural Information Processing Systems, 2015(http://papers.nips.cc/
paper/5775-learning-structured-output-representation-using-
deep-conditional-generative-models.pdf).

3.	 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning:
A Review and New Perspectives. IEEE transactions on Pattern Analysis
and Machine Intelligence 35.8, 2013: 1798-1828(https://arxiv.org/
pdf/1206.5538.pdf).

4.	 Xi Chen and others. Infogan: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. Advances in Neural Information
Processing Systems, 2016(http://papers.nips.cc/paper/6399-
infogan-interpretable-representation-learning-by-information-
maximizing-generative-adversarial-nets.pdf).

https://arxiv.org/pdf/1312.6114.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://arxiv.org/pdf/1206.5538.pdf
https://arxiv.org/pdf/1206.5538.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

Chapter 8

[269]

5.	 I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, and A. Lerchner. β -VAE: Learning basic visual concepts with a
constrained variational framework. ICLR, 2017(https://openreview.net/
pdf?id=Sy2fzU9gl).

6.	 Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016 (https://arxiv.org/pdf/1606.05908.pdf).

7.	 Luc Devroye. Sample-Based Non-Uniform Random Variate Generation.
Proceedings of the 18th conference on Winter simulation. ACM,
1986(http://www.eirene.de/Devroye.pdf).

https://openreview.net/pdf?id=Sy2fzU9gl
https://openreview.net/pdf?id=Sy2fzU9gl
https://arxiv.org/pdf/1606.05908.pdf
http://www.eirene.de/Devroye.pdf

[271]

Deep Reinforcement
Learning

Reinforcement Learning (RL) is a framework that is used by an agent for decision-
making. The agent is not necessarily a software entity such as in video games.
Instead, it could be embodied in hardware such as a robot or an autonomous
car. An embodied agent is probably the best way to fully appreciate and utilize
reinforcement learning since a physical entity interacts with the real-world and
receives responses.

The agent is situated within an environment. The environment has a state that
can be partially or fully observable. The agent has a set of actions that it can use
to interact with its environment. The result of an action transitions the environment
to a new state. A corresponding scalar reward is received after executing an action.
The goal of the agent is to maximize the accumulated future reward by learning
a policy that will decide which action to take given a state.

Reinforcement learning has a strong similarity to human psychology. Humans learn
by experiencing the world. Wrong actions result in a certain form of penalty and
should be avoided in the future, whilst actions which are right are rewarded and
should be encouraged. This strong similarity to human psychology has convinced
many researchers to believe that reinforcement learning can lead us towards
Artificial Intelligence (AI).

Reinforcement learning has been around for decades. However, beyond simple
world models, RL has struggled to scale. This is where Deep Learning (DL),
came into play. It solved this scalability problem which opened up the era of Deep
Reinforcement Learning (DRL), which is what we are going to focus on in this
chapter. One of the notable examples in DRL is the work of DeepMind on agents
that were able to surpass the best human performance on different video games.
In this chapter, we discuss both RL and DRL.

Deep Reinforcement Learning

[272]

In summary, the goal of this chapter is to present:

•	 The principles of RL
•	 The Reinforcement Learning technique, Q-Learning
•	 Advanced topics including Deep Q-Network (DQN),

and Double Q-Learning (DDQN)
•	 Instructions on how to implement RL on Python and DRL within Keras

Principles of reinforcement learning (RL)
Figure 9.1.1 shows the perception-action-learning loop that is used to describe RL.
The environment is a soda can sitting on the floor. The agent is a mobile robot whose
goal is to pick up the soda can. It observes the environment around it and tracks the
location of the soda can through an onboard camera. The observation is summarized
in a form of state which the robot will use to decide which action to take. The actions
it takes may pertain to low-level control such as the rotation angle/speed of each
wheel, rotation angle/speed of each joint of the arm, and whether the gripper is
open or close.

Alternatively, the actions may be high-level control moves such as moving the robot
forward/backward, steering with a certain angle, and grab/release. Any action that
moves the gripper away from the soda receives a negative reward. Any action that
closes the gap between the gripper location and the soda receives a positive reward.
When the robot arm successfully picks up the soda can, it receives a big positive
reward. The goal of RL is to learn the optimal policy that helps the robot to decide
which action to take given a state to maximize the accumulated discounted reward:

Figure 9.1.1: The perception-action-learning loop in reinforcement learning

Chapter 9

[273]

Formally, the RL problem can be described as a Markov Decision Process (MDP).
For simplicity, we'll assume a deterministic environment where a certain action
in a given state will consistently result in a known next state and reward. In a later
section of this chapter, we'll look at how to consider stochasticity. At timestep t:

•	 The environment is in a state st from the state space S which may be
discrete or continuous. The starting state is s0 while the terminal state is sT.

•	 The agent takes action at from the action space A by obeying the policy,
()|t ta sπ . A may be discrete or continuous.

•	 The environment transitions to a new state st+1 using the state transition
dynamics ()1 | ,t t ts s a+T . The next state is only dependent on the current state
and action. T is not known to the agent.

•	 The agent receives a scalar reward using a reward function, rt+1 = R(st,at) with
:r × → RA S . The reward is only dependent on the current state and action.

R is not known to the agent.

•	 Future rewards are discounted by kγ where []0,1γ ∈ and k is the future
timestep.

•	 Horizon, H, is the number of timesteps, T, needed to complete one episode
from s0 to sT.

The environment may be fully or partially observable. The latter is also known as
a partially observable MDP or POMDP. Most of the time, it's unrealistic to fully
observe the environment. To improve the observability, past observations are also
taken into consideration with the current observation. The state comprises the
sufficient observations about the environment for the policy to decide on which
action to take. In Figure 9.1.1, this could be the 3D position of the soda can with
respect to the robot gripper as estimated by the robot camera.

Every time the environment transitions to a new state, the agent receives a scalar
reward, rt+1. In Figure 9.1.1, the reward could be +1 whenever the robot gets closer
to the soda can, -1 whenever it gets farther, and +100 when it closes the gripper and
successfully picks up the soda can. The goal of the agent is to learn an optimal policy
π∗ that maximizes the return from all states:

targmax Rππ∗ = (Equation 9.1.1)

The return is defined as the discounted cumulative reward, 0

T k
t t kk
R rγ +=
=∑ . It

can be observed from Equation 9.1.1 that future rewards have lower weights when
compared to the immediate rewards since generally 1.0kγ < where []0,1γ ∈ .
At the extremes, when 0γ = , only the immediate reward matters. When 1γ =
future rewards have the same weight as the immediate reward.

Deep Reinforcement Learning

[274]

Return can be interpreted as a measure of the value of a given state by following
an arbitrary policy, π :

()
0

r
T

k
t t t k

k

V s Rπ γ +
=

= =∑ (Equation 9.1.2)

To put the RL problem in another way, the goal of the agent is to learn the optimal
policy that maximizes V π for all states s:

()argmax V sπ
ππ∗ = (Equation 9.1.3)

The value function of the optimal policy is simply V*. In Figure 9.1.1, the optimal
policy is the one that generates the shortest sequence of actions that brings the robot
closer and closer to the soda can until it has been fetched. The closer the state is to the
goal state, the higher its value.

The sequence of events leading to the goal (or terminal state) can be modeled as the
trajectory or rollout of the policy:

Trajectory = (s0a0r1s1,s1a1r2s2,...,sT-1aT-1rTsT) (Equation 9.1.4)

If the MDP is episodic when the agent reaches the terminal state, sT, the state is
reset to s0. If T is finite, we have a finite horizon. Otherwise, the horizon is infinite.
In Figure 9.1.1, if the MDP is episodic, after collecting the soda can, the robot may
look for another soda can to pick up and the RL problem repeats.

The Q value
An important question is that if the RL problem is to find π∗ , how does the agent
learn by interacting with the environment? Equation 9.1.3 does not explicitly indicate
the action to try and the succeeding state to compute the return. In RL, we find that
it's easier to learn π∗ by using the Q value:

(),aargmax Q s aπ∗ = (Equation 9.2.1)

Chapter 9

[275]

Where:

() (),
a

V s maxQ s a∗ = (Equation 9.2.2)

In other words, instead of finding the policy that maximizes the value for all states,
Equation 9.2.1 looks for the action that maximizes the quality (Q) value for all states.
After finding the Q value function, V* and hence π

∗
 are determined by Equation 9.2.2

and 9.1.3 respectively.

If for every action, the reward and the next state can be observed, we can formulate
the following iterative or trial and error algorithm to learn the Q value:

() (), ,
a

Q s a r maxQ s aγ
′

′ ′= + (Equation 9.2.3)

For notational simplicity, both s' and a' are the next state and action respectively.
Equation 9.2.3 is known as the Bellman Equation which is the core of the Q-Learning
algorithm. Q-Learning attempts to approximate the first-order expansion of return or
value (Equation 9.1.2) as a function of both current state and action.

From zero knowledge of the dynamics of the environment, the agent tries an action a,
observes what happens in the form of reward, r, and next state, s'. ()max ,

a
Q s a

′
′ ′ chooses

the next logical action that will give the maximum Q value for the next state. With
all terms in Equation 9.2.3 known, the Q value for that current state-action pair is
updated. Doing the update iteratively will eventually learn the Q value function.

Q-Learning is an off-policy RL algorithm. It learns to improve the policy by not
directly sampling experiences from that policy. In other words, the Q values are
learned independently of the underlying policy being used by the agent. When the
Q value function has converged, only then is the optimal policy determined using
Equation 9.2.1.

Before giving an example on how to use Q-Learning, we should note that the agent
must continually explore its environment while gradually taking advantage of
what it has learned so far. This is one of the issues in RL – finding the right balance
between Exploration and Exploitation. Generally, during the start of learning, the
action is random (exploration). As the learning progresses, the agent takes advantage
of the Q value (exploitation). For example, at the start, 90% of the action is random
and 10% from Q value function, and by the end of each episode, this is gradually
decreased. Eventually, the action is 10% random and 90% from Q value function.

Deep Reinforcement Learning

[276]

Q-Learning example
To illustrate the Q-Learning algorithm, we need to consider a simple deterministic
environment, as shown in the following figure. The environment has six states.
The rewards for allowed transitions are shown. The reward is non-zero in two cases.
Transition to the Goal (G) state has +100 reward while moving into Hole (H) state
has -100 reward. These two states are terminal states and constitute the end of one
episode from the Start state:

Figure 9.3.1: Rewards in a simple deterministic world

To formalize the identity of each state, we need to use a (row, column) identifier as
shown in the following figure. Since the agent has not learned anything yet about its
environment, the Q-Table also shown in the following figure has zero initial values.
In this example, the discount factor, 0.9γ = . Recall that in the estimate of current Q
value, the discount factor determines the weight of future Q values as a function of
the number of steps, . In Equation 9.2.3, we only consider the immediate future
Q value, k = 1:

Figure 9.3.2: States in the simple deterministic environment and the agent's initial Q-Table

Chapter 9

[277]

Initially, the agent assumes a policy that selects a random action 90% of the time and
exploits the Q-Table 10% of the time. Suppose the first action is randomly chosen and
indicates a move in the right direction. Figure 9.3.3 illustrates the computation of the
new Q value of state (0, 0) for a move to the right action. The next state is (0, 1). The
reward is 0, and the maximum of all the next state's Q values is zero. Therefore, the
Q value of state (0, 0) for a move to the right action remains 0.

To easily track the initial state and next state, we use different shades of gray on both
the environment and the Q-Table–lighter gray for initial state and darker gray for the
next state. In choosing the next action for the next state, the candidate actions are in
the thicker border:

Figure 9.3.3: Assuming the action taken by the agent is a move to the right,
the update on Q value of state (0, 0) is shown

Deep Reinforcement Learning

[278]

Figure 9.3.4: Assuming the action chosen by the agent is move down,
the update on Q value of state (0, 1) is shown

Figure 9.3.5: Assuming the action chosen by the agent is a move to the right,
the update on Q value of state (1, 1) is shown

Let's suppose that the next randomly chosen action is move down. Figure 9.3.4 shows
no change in the Q value of state (0, 1) for the move down action. In Figure 9.3.5,
the agent's third random action is a move to the right. It encountered the H and
received a -100 reward. This time, the update is non-zero. The new Q value for the
state (1, 1) is -100 for the move to the right direction. One episode has just finished,
and the agent returns to the Start state.

Chapter 9

[279]

Figure 9.3.6: Assuming the actions chosen by the agent are two successive moves to the right,
the update on Q value of state (0, 1) is shown

Let's suppose the agent is still in the exploration mode as shown in Figure 9.3.6.
The first step it took for the second episode is a move to the right. As expected, the
update is 0. However, the second random action it chose is also move to the right.
The agent reached the G state and received a big +100 reward. The Q value for the
state (0, 1) move to the right becomes 100. The second episode is done, and the agent
goes back to the Start state.

Figure 9.3.7: Assuming the action chosen by the agent is a move to the right,
the update on Q value of state (0, 0) is shown

Deep Reinforcement Learning

[280]

Figure 9.3.8: In this instance, the agent's policy decided to exploit the Q-Table to determine
the action at states (0, 0) and (0, 1). The Q-Table suggests to move to the right for both states.

At the beginning of the third episode, the random action taken by the agent is a
move to the right. The Q value of state (0, 0) is now updated with a non-zero value
because the next state's possible actions have 100 as the maximum Q value. Figure
9.3.7 shows the computation involved. The Q value of the next state (0, 1) ripples
back to the earlier state (0, 0). It is like giving credit to the earlier states that helped
in finding the G state.

The progress in Q-Table has been substantial. In fact, in the next episode, if for some
reason the policy decided to exploit the Q-Table instead of randomly exploring the
environment, the first action is to move to the right according to the computation
in Figure 9.3.8. In the first row of the Q-Table, the action that results in maximum
Q value is a move to the right. For the next state (0, 1), the second row of Q-Table
suggests that the next action is still to move to the right. The agent has successfully
reached the goal. The policy guided the agent on the right set of actions to achieve
its goal.

If the Q-Learning algorithm continues to run indefinitely, the Q-Table will converge.
The assumptions for convergence are the RL problem must be deterministic MDP
with bounded rewards and all states are visited infinitely often.

Chapter 9

[281]

Q-Learning in Python
The environment and the Q-Learning discussed in the previous section can be
implemented in Python. Since the policy is just a simple table, there is, at this
point in time no need for Keras. Listing 9.3.1 shows q-learning-9.3.1.py, the
implementation of the simple deterministic world (environment, agent, action,
and Q-Table algorithms) using the QWorld class. For conciseness, the functions
dealing with the user interface are not shown.

In this example, the environment dynamics is represented by self.transition_
table. At every action, self.transition_table determines the next state. The
reward for executing an action is stored in self.reward_table. The two tables are
consulted every time an action is executed by the step() function. The Q-Learning
algorithm is implemented by update_q_table() function. Every time the agent
needs to decide which action to take, it calls the act() function. The action may be
randomly drawn or decided by the policy using the Q-Table. The percent chance that
the action chosen is random is stored in the self.epsilon variable which is updated
by update_epsilon() function using a fixed epsilon_decay.

Before executing the code in Listing 9.3.1, we need to run:

$ sudo pip3 install termcolor

To install termcolor package. This package helps in visualizing text outputs on the
Terminal.

The complete code can be found on GitHub at: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

Listing 9.3.1, q-learning-9.3.1.py. A simple deterministic MDP with six states:

from collections import deque
import numpy as np
import argparse
import os
import time

from termcolor import colored

class QWorld():
 def __init__(self):
 # 4 actions
 # 0 - Left, 1 - Down, 2 - Right, 3 - Up

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Deep Reinforcement Learning

[282]

 self.col = 4

 # 6 states
 self.row = 6

 # setup the environment
 self.q_table = np.zeros([self.row, self.col])
 self.init_transition_table()
 self.init_reward_table()

 # discount factor
 self.gamma = 0.9

 # 90% exploration, 10% exploitation
 self.epsilon = 0.9
 # exploration decays by this factor every episode
 self.epsilon_decay = 0.9
 # in the long run, 10% exploration, 90% exploitation
 self.epsilon_min = 0.1

 # reset the environment
 self.reset()
 self.is_explore = True

 # start of episode
 def reset(self):

 self.state = 0
 return self.state

 # agent wins when the goal is reached
 def is_in_win_state(self):
 return self.state == 2

 def init_reward_table(self):
 """
 0 - Left, 1 - Down, 2 - Right, 3 - Up

 | 0 | 0 | 100 |

 | 0 | 0 | -100 |

Chapter 9

[283]

 """
 self.reward_table = np.zeros([self.row, self.col])
 self.reward_table[1, 2] = 100.
 self.reward_table[4, 2] = -100.

 def init_transition_table(self):
 """
 0 - Left, 1 - Down, 2 - Right, 3 - Up

 | 0 | 1 | 2 |

 | 3 | 4 | 5 |

 """
 self.transition_table = np.zeros([self.row, self.col],
dtype=int)

 self.transition_table[0, 0] = 0
 self.transition_table[0, 1] = 3
 self.transition_table[0, 2] = 1
 self.transition_table[0, 3] = 0

 self.transition_table[1, 0] = 0
 self.transition_table[1, 1] = 4
 self.transition_table[1, 2] = 2
 self.transition_table[1, 3] = 1

 # terminal Goal state
 self.transition_table[2, 0] = 2
 self.transition_table[2, 1] = 2
 self.transition_table[2, 2] = 2
 self.transition_table[2, 3] = 2

 self.transition_table[3, 0] = 3
 self.transition_table[3, 1] = 3
 self.transition_table[3, 2] = 4
 self.transition_table[3, 3] = 0

 self.transition_table[4, 0] = 3
 self.transition_table[4, 1] = 4
 self.transition_table[4, 2] = 5
 self.transition_table[4, 3] = 1

Deep Reinforcement Learning

[284]

 # terminal Hole state
 self.transition_table[5, 0] = 5
 self.transition_table[5, 1] = 5
 self.transition_table[5, 2] = 5
 self.transition_table[5, 3] = 5

 # execute the action on the environment
 def step(self, action):
 # determine the next_state given state and action
 next_state = self.transition_table[self.state, action]
 # done is True if next_state is Goal or Hole
 done = next_state == 2 or next_state == 5
 # reward given the state and action
 reward = self.reward_table[self.state, action]
 # the enviroment is now in new state
 self.state = next_state
 return next_state, reward, done

 # determine the next action
 def act(self):
 # 0 - Left, 1 - Down, 2 - Right, 3 - Up
 # action is from exploration
 if np.random.rand() <= self.epsilon:
 # explore - do random action
 self.is_explore = True
 return np.random.choice(4,1)[0]

 # or action is from exploitation
 # exploit - choose action with max Q-value
 self.is_explore = False
 return np.argmax(self.q_table[self.state])

 # Q-Learning - update the Q Table using Q(s, a)
 def update_q_table(self, state, action, reward, next_state):
 # Q(s, a) = reward + gamma * max_a' Q(s', a')
 q_value = self.gamma * np.amax(self.q_table[next_state])
 q_value += reward
 self.q_table[state, action] = q_value

Chapter 9

[285]

 # UI to dump Q Table contents
 def print_q_table(self):
 print("Q-Table (Epsilon: %0.2f)" % self.epsilon)
 print(self.q_table)

 # update Exploration-Exploitation mix
 def update_epsilon(self):
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

Listing 9.3.2, q-learning-9.3.1.py. The main Q-Learning loop. The agent's Q-Table
is updated every state, action, reward, and next state iteration:

state, action, reward, next state iteration
for episode in range(episode_count):
 state = q_world.reset()
 done = False
 print_episode(episode, delay=delay)
 while not done:
 action = q_world.act()
 next_state, reward, done = q_world.step(action)
 q_world.update_q_table(state, action, reward, next_state)
 print_status(q_world, done, step, delay=delay)
 state = next_state
 # if episode is done, perform housekeeping
 if done:
 if q_world.is_in_win_state():
 wins += 1
 scores.append(step)
 if wins > maxwins:
 print(scores)
 exit(0)
 # Exploration-Exploitation is updated every episode
 q_world.update_epsilon()
 step = 1
 else:
 step += 1

print(scores)
q_world.print_q_table()

Deep Reinforcement Learning

[286]

The perception-action-learning loop is illustrated in Listing 9.3.2. At every episode,
the environment resets to the Start state. The action to execute is chosen and applied
to the environment. The reward and next state are observed and used to update the
Q-Table. The episode is completed (done = True) upon reaching the Goal or Hole
state. For this example, the Q-Learning runs for 100 episodes or 10 wins, whichever
comes first. Due to the decrease in the value of the self.epsilon variable at every
episode, the agent starts to favor exploitation of Q-Table to determine the action to
perform given a state. To see the Q-Learning simulation we simply need to run:

$ python3 q-learning-9.3.1.py

Figure 9.3.9: A screenshot showing the Q-Table after 2000 wins of the agent

The preceding figure shows the screenshot if maxwins = 2000 (2000x Goal state
is reached) and delay = 0 (to see the final Q-Table only) by running:

$ python3 q-learning-9.3.1.py --train

The Q-Table has converged and shows the logical action that the agent can take
given a state. For example, in the first row or state (0, 0), the policy advises move
to the right. The same for the state (0, 1) on the second row. The second action
reaches the Goal state. The scores variable dump shows that the minimum
number of steps taken decreases as the agent gets correct actions from the policy.

From Figure 9.3.9, we can compute the value of each state from Equation 9.2.2,
() (),

a
V s maxQ s a∗ = . For example, for state (0, 0), V*(s) = max(81.0,72.9,90.0,81.0) = 90.0.
Following figure shows the value for each state:

Chapter 9

[287]

Figure 9.3.10: The value for each state from Figure 9.3.9 and Equation 9.2.2

Nondeterministic environment
In the event that the environment is nondeterministic, both the reward and action
are probabilistic. The new system is a stochastic MDP. To reflect the nondeterministic
reward the new value function is:

() � �
0

r
T

k
t t t k

k

V s Rπ γ +
=

= = ∑
� �� �� �� �� �

E E (Equation 9.4.1)

The Bellman equation is modified as:

() (), max ,s a
Q s a r Q s aγ′ ′

′ ′= +� �� �� �E (Equation 9.4.2)

Temporal-difference learning
Q-Learning is a special case of a more generalized Temporal-Difference Learning
or TD-Learning ()TD λ . More specifically, it's a special case of one-step TD-Learning
TD(0):

() () () ()(), , max , ,
a

Q s a Q s a r Q s a Q s aα γ
′

′ ′= + + − (Equation 9.5.1)

In the equation α is the learning rate. We should note that when 1α= , Equation
9.5.1 is similar to the Bellman equation. For simplicity, we'll refer to Equation
9.5.1 as Q-Learning or generalized Q-Learning.

Deep Reinforcement Learning

[288]

Previously, we referred to Q-Learning as an off-policy RL algorithm since it learns
the Q value function without directly using the policy that it is trying to optimize.
An example of an on-policy one-step TD-learning algorithm is SARSA which similar
to Equation 9.5.1:

() () () ()(), , , ,Q s a Q s a r Q s a Q s aα γ ′ ′= + + − (Equation 9.5.2)

The main difference is the use of the policy that is being optimized to determine a'.
The terms s, a, r, s' and a' (thus the name SARSA) must be known to update the Q
value function at every iteration. Both Q-Learning and SARSA use existing estimates
in the Q value iteration, a process known as bootstrapping. In bootstrapping, we
update the current Q value estimate from the reward and the subsequent Q value
estimate(s).

Q-Learning on OpenAI gym
Before presenting another example, there appears to be a need for a suitable RL
simulation environment. Otherwise, we can only run RL simulations on very simple
problems like in the previous example. Fortunately, OpenAI created Gym, https://
gym.openai.com.

The gym is a toolkit for developing and comparing RL algorithms. It works with
most deep learning libraries, including Keras. The gym can be installed by running
the following command:

$ sudo pip3 install gym

The gym has several environments where an RL algorithm can be tested against
such as toy text, classic control, algorithmic, Atari, and 2D/3D robots. For example,
FrozenLake-v0 (Figure 9.5.1) is a toy text environment similar to the simple
deterministic world used in the Q-Learning in Python example. FrozenLake-v0
has 12 states. The state marked S is the starting state, F is the frozen part of the
lake which is safe, H is the Hole state that should be avoided, and G is the Goal
state where the frisbee is. The reward is +1 for transitioning to the Goal state. For
all other states, the reward is zero.

In FrozenLake-v0, there are also four available actions (Left, Down, Right, Up)
known as action space. However, unlike the simple deterministic world earlier, the
actual movement direction is only partially dependent on the chosen action. There
are two variations of the FrozenLake-v0 environment, slippery and non-slippery.
As expected, the slippery mode is more challenging:

https://gym.openai.com
https://gym.openai.com

Chapter 9

[289]

Figure 9.5.1: Frozen lake environment in OpenAI Gym

An action applied on FrozenLake-v0 returns the observation (equivalent to the next
state), reward, done (whether the episode is finished), and a dictionary of debugging
information. The observable attributes of the environment, known as observation
space, are captured by the returned observation object.

The generalized Q-Learning can be applied to the FrozenLake-v0 environment.
Table 9.5.1 shows the improvement in performance of both slippery and non-
slippery environments. A method of measuring the performance of the policy
is the percent of episodes executed that resulted in reaching the Goal state. The
higher is the percentage, the better. From the baseline of pure exploration (random
action) of about 1.5%, the policy can achieve ~76% Goal state for non-slippery and
~71% for the slippery environment. As expected, it is harder to control the slippery
environment.

The code can still be implemented in Python and NumPy since it only requires
a Q-Table. Listing 9.5.1 shows the implementation of the QAgent class while listing
9.5.2 demonstrates the agent's perception-action-learning loop. Apart from using
FrozenLake-v0 environment from OpenAI Gym, the most important change is
the implementation of the generalized Q-Learning as defined by Equation 9.5.1
in the update_q_table() function.

The qagent object can operate in either slippery or non-slippery mode. The agent
is trained for 40,000 iterations. After training, the agent can exploit the Q-Table to
choose the action to execute given any policy as shown in the test mode of Table 9.5.1.
There is a huge performance boost in using the learned policy as demonstrated in
Table 9.5.1. With the use of the gym, a lot of the code in constructing the
environment is gone.

Deep Reinforcement Learning

[290]

This will help us to focus on building a working RL algorithm. To run the code in
slow motion or delay of 1 sec per action:

$ python3 q-frozenlake-9.5.1.py -d -t=1

Mode Run Approx % Goal
Train non-slippery python3 q-frozenlake-9.5.1.py 26.0
Test non-slippery python3 q-frozenlake-9.5.1.py -d 76.0
Pure random action
non-slippery

python3 q-frozenlake-9.5.1.py -e 1.5

Train slippery python3 q-frozenlake-9.5.1.py -s 26
Test slippery python3 q-frozenlake-9.5.1.py -s -d 71.0
Pure random slippery python3 q-frozenlake-9.5.1.py -s -e 1.5

Table 9.5.1: Baseline and performance of generalized Q-Learning on the
FrozenLake-v0 environment with learning rate = 0.5

Listing 9.5.1, q-frozenlake-9.5.1.py shows the implementation of Q-Learning on
FrozenLake-v0 environment:

from collections import deque
import numpy as np
import argparse
import os
import time
import gym
from gym import wrappers, logger

class QAgent():
 def __init__(self,
 observation_space,
 action_space,
 demo=False,
 slippery=False,
 decay=0.99):

 self.action_space = action_space
 # number of columns is equal to number of actions
 col = action_space.n
 # number of rows is equal to number of states
 row = observation_space.n
 # build Q Table with row x col dims
 self.q_table = np.zeros([row, col])

Chapter 9

[291]

 # discount factor
 self.gamma = 0.9

 # initially 90% exploration, 10% exploitation
 self.epsilon = 0.9
 # iteratively applying decay til 10% exploration/90%
exploitation
 self.epsilon_decay = decay
 self.epsilon_min = 0.1

 # learning rate of Q-Learning
 self.learning_rate = 0.1

 # file where Q Table is saved on/restored fr
 if slippery:
 self.filename = 'q-frozenlake-slippery.npy'
 else:
 self.filename = 'q-frozenlake.npy'

 # demo or train mode
 self.demo = demo
 # if demo mode, no exploration
 if demo:
 self.epsilon = 0

 # determine the next action
 # if random, choose from random action space
 # else use the Q Table
 def act(self, state, is_explore=False):
 # 0 - left, 1 - Down, 2 - Right, 3 - Up
 if is_explore or np.random.rand() < self.epsilon:
 # explore - do random action
 return self.action_space.sample()

 # exploit - choose action with max Q-value
 return np.argmax(self.q_table[state])

 # TD(0) learning (generalized Q-Learning) with learning rate
 def update_q_table(self, state, action, reward, next_state):
 # Q(s, a) += alpha * (reward + gamma * max_a' Q(s', a') - Q
(s, a))
 q_value = self.gamma * np.amax(self.q_table[next_state])
 q_value += reward
 q_value -= self.q_table[state, action]

Deep Reinforcement Learning

[292]

 q_value *= self.learning_rate
 q_value += self.q_table[state, action]
 self.q_table[state, action] = q_value

 # dump Q Table
 def print_q_table(self):
 print(self.q_table)
 print("Epsilon : ", self.epsilon)

 # save trained Q Table
 def save_q_table(self):
 np.save(self.filename, self.q_table)

 # load trained Q Table
 def load_q_table(self):
 self.q_table = np.load(self.filename)

 # adjust epsilon
 def update_epsilon(self):
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

Listing 9.5.2, q-frozenlake-9.5.1.py. The main Q-Learning loop for the
FrozenLake-v0 environment:

loop for the specified number of episode
for episode in range(episodes):
 state = env.reset()
 done = False
 while not done:
 # determine the agent's action given state
 action = agent.act(state, is_explore=args.explore)
 # get observable data
 next_state, reward, done, _ = env.step(action)
 # clear the screen before rendering the environment
 os.system('clear')
 # render the environment for human debugging
 env.render()

Chapter 9

[293]

 # training of Q Table
 if done:
 # update exploration-exploitation ratio
 # reward > 0 only when Goal is reached
 # otherwise, it is a Hole
 if reward > 0:
 wins += 1

 if not args.demo:
 agent.update_q_table(state, action, reward, next_state)
 agent.update_epsilon()

 state = next_state
 percent_wins = 100.0 * wins / (episode + 1)
 print("-------%0.2f%% Goals in %d Episodes---------"
 % (percent_wins, episode))
 if done:
 time.sleep(5 * delay)
 else:
 time.sleep(delay)

Deep Q-Network (DQN)
Using the Q-Table to implement Q-Learning is fine in small discrete environments.
However, when the environment has numerous states or continuous as in most
cases, a Q-Table is not feasible or practical. For example, if we are observing a state
made of four continuous variables, the size of the table is infinite. Even if we attempt
to discretize the four variables into 1000 values each, the total number of rows in the
table is a staggering 10004 = 1e12. Even after training, the table is sparse - most of the
cells in this table are zero.

A solution to this problem is called DQN [2] which uses a deep neural network
to approximate the Q-Table. As shown in Figure 9.6.1. There are two approaches
to build the Q-network:

1.	 The input is the state-action pair, and the prediction is the Q value
2.	 The input is the state, and the prediction is the Q value for each action

The first option is not optimal since the network will be called a number of times
equal to the number of actions. The second is the preferred method. The Q-Network
is called only once.

Deep Reinforcement Learning

[294]

The most desirable action is simply the action with the biggest Q value:

Figure 9.6.1: A Deep Q-Network

The data required to train the Q-Network come from the agent's experiences:
()0 0 1 1 1 1 2 2 1 1s a r s ,s r s , ,s a r sT T T Ta − −… . Each training sample is a unit of experience

1 1s a r st t t t+ + . At a given state at timestep t, s = st, the action, a = at, is determined
using the Q-Learning algorithm similar to the previous section:

()
()
(),

a

sample a random
s argmaxQ s a otherwise

ε
π

 <   =     
 (Equation 9.6.1)

For notational simplicity, we omit the subscript and the use of the bold letter. We
need to note that Q(s,a) is the Q-Network. Strictly speaking, it is Q(a|s) since the
action is moved to the prediction as shown on the right of Figure 9.6.1. The action
with the highest Q value is the action that is applied on the environment to get the
reward, r = rt+1, the next state, s' = st+1 and a Boolean done indicating if the next state
is terminal. From Equation 9.5.1 on generalized Q-Learning, an MSE loss function can
be determined by applying the chosen action:

() ()()
2

max , ,
a

r Q s a Q s aγ
′

′ ′= + −L (Equation 9.6.2)

Chapter 9

[295]

Where all terms are familiar from the previous discussion on Q-Learning and Q(a|s)
→ Q(s,a). The term () ()max , max

a a
Q s a Q a s

′ ′
′ ′ ′ ′→ . In other words, using the Q-Network,

predict the Q value of each action given next state and get the maximum among
them. Note that at the terminal state s', () ()max | max | 0

a a
Q a s Q s a

′ ′
′ ′ ′ ′= = .

Algorithm 9.6.1, DQN algorithm:

Require: Initialize replay memory D to capacity N

Require: Initialize action-value function Q with random weights θ

Require: Initialize target action-value function Qtarget with weights θ θ− =

Require: Exploration rate, ε and discount factor, γ

1.	 for episode = 1, …,M do:
2.	 Given initial state s
3.	 for step = 1,…, T do:

4.	 Choose action

()
()argmax , ;

a

sample a random
a Q s a otherwise

ε
θ

 <   =     
5.	 Execute action a, observe reward r and next state s'
6.	 Store transition (s, a, r, s') in D
7.	 Update the state, s = s'

8.	 //experience replay
9.	 Sample a mini batch of episode experiences (sj, aj, rj+1, sj+1) from D

10.	 ()
1

1

1 1 1

1

max , ;
j

j

max
j target j j

a

r if episodeterminates at j
Q r Q s a otherwiseγ θ

+

+

−
+ + +

 +   = +    
11.	 Perform gradient descent step on ()()2, ;max j jQ Q s a θ−− with respect to

parameters θ
12.	 // periodic update of the target network

13.	 Every C steps Qtarget = Q, that is set θ θ− =
14.	 End

However, it turns out that training the Q-Network is unstable. There are two
problems causing the instability:

1.	 A high correlation between samples
2.	 A non-stationary target

Deep Reinforcement Learning

[296]

A high correlation is due to the sequential nature of sampling experiences. DQN
addressed this issue by creating a buffer of experiences. The training data are
randomly sampled from this buffer. This process is known as experience replay.

The issue of the non-stationary target is due to the target network Q(s',a') that is
modified after every mini batch of training. A small change in the target network
can create a significant change in the policy, the data distribution, and the correlation
between the current Q value and target Q value. This is resolved by freezing the
weights of the target network for C training steps. In other words, two identical
Q-Networks are created. The target Q-Network parameters are copied from the
Q-Network under training every C training steps.

The DQN algorithm is summarized in Algorithm 9.6.1.

DQN on Keras
To illustrate DQN, the CartPole-v0 environment of the OpenAI Gym is used.
CartPole-v0 is a pole balancing problem. The goal is to keep the pole from falling over.
The environment is 2D. The action space is made of two discrete actions (left and right
movements). However, the state space is continuous and is made of four variables:

1.	 Linear position
2.	 Linear velocity
3.	 Angle of rotation
4.	 Angular velocity

The CartPole-v0 is shown in Figure 9.6.1.

Initially, the pole is upright. A reward of +1 is provided for every timestep that the
pole remains upright. The episode ends when the pole exceeds 15 degrees from the
vertical or 2.4 units from the center. The CartPole-v0 problem is considered solved
if the average reward is 195.0 in 100 consecutive trials:

Figure 9.6.1: The CartPole-v0 environment

Chapter 9

[297]

Listing 9.6.1 shows us the DQN implementation for CartPole-v0. The DQNAgent
class represents the agent using DQN. Two Q-Networks are created:

1.	 Q-Network or Q in Algorithm 9.6.1
2.	 Target Q-Network or Qtarget in Algorithm 9.6.1

Both networks are MLP with three hidden layers of 256 units each. The Q-Network
is trained during experience replay, replay(). At a regular interval of C = 10
training steps, the Q-Network parameters are copied to the Target Q-Network
by update_weights(). This implements line 13, Qtarget = Q, in algorithm 9.6.1.
After every episode, the ratio of exploration-exploitation is decreased by update_
epsilon() to take advantage of the learned policy.

To implement line 10 in Algorithm 9.6.1 during experience replay, replay(), for each
experience unit, (sj, aj, rj+1, sj+1), the Q value for the action aj is set to Qmax. All other
actions have their Q values unchanged.

This is implemented by the following lines:

policy prediction for a given state
q_values = self.q_model.predict(state)

get Q_max
q_value = self.get_target_q_value(next_state)

correction on the Q value for the action used
q_values[0][action] = reward if done else q_value

Only the action aj has a non-zero loss equal to ()()2max , ;j jQ Q s a θ− as shown by line
11 of Algorithm 9.6.1. Note that the experience replay is called by the perception-
action-learning loop in Listing 9.6.2 after the end of each episode assuming that there
is sufficient data in the buffer (that is, buffer size, is greater or equal to batch size).
During the experience replay, one batch of experience units is randomly sampled
and used to train the Q-Network.

Similar to the Q-Table, act() implements the ε -greedy policy, Equation 9.6.1.
Experiences are stored by remember() in the replay buffer. The computation
of Q is done by the get_target_q_value() function. On the average of 10 runs,
CartPole-v0 is solved by DQN within 822 episodes. We need to take note that
the results may vary every time the training runs.

Listing 9.6.1, dqn-cartpole-9.6.1.py shows us the DQN implementation within
Keras:

from keras.layers import Dense, Input

Deep Reinforcement Learning

[298]

from keras.models import Model
from keras.optimizers import Adam
from collections import deque
import numpy as np
import random
import argparse
import gym
from gym import wrappers, logger

class DQNAgent():
 def __init__(self, state_space, action_space, args,
episodes=1000):

 self.action_space = action_space

 # experience buffer
 self.memory = []

 # discount rate
 self.gamma = 0.9

 # initially 90% exploration, 10% exploitation
 self.epsilon = 0.9
 # iteratively applying decay til 10% exploration/90%
exploitation
 self.epsilon_min = 0.1
 self.epsilon_decay = self.epsilon_min / self.epsilon
 self.epsilon_decay = self.epsilon_decay ** (1. /
float(episodes))

 # Q Network weights filename
 self.weights_file = 'dqn_cartpole.h5'
 # Q Network for training
 n_inputs = state_space.shape[0]
 n_outputs = action_space.n
 self.q_model = self.build_model(n_inputs, n_outputs)
 self.q_model.compile(loss='mse', optimizer=Adam())
 # target Q Network
 self.target_q_model = self.build_model(n_inputs, n_outputs)
 # copy Q Network params to target Q Network
 self.update_weights()

 self.replay_counter = 0
 self.ddqn = True if args.ddqn else False

Chapter 9

[299]

 if self.ddqn:
 print("----------Double DQN--------")
 else:
 print("-------------DQN------------")

 # Q Network is 256-256-256 MLP
 def build_model(self, n_inputs, n_outputs):
 inputs = Input(shape=(n_inputs,), name='state')
 x = Dense(256, activation='relu')(inputs)
 x = Dense(256, activation='relu')(x)
	 x = Dense(256, activation='relu')(x)
 x = Dense(n_outputs, activation='linear', name='action')(x)
 q_model = Model(inputs, x)
 q_model.summary()
 return q_model

 # save Q Network params to a file
 def save_weights(self):
 self.q_model.save_weights(self.weights_file)

 def update_weights(self):
 self.target_q_model.set_weights(self.q_model.get_weights())

 # eps-greedy policy
 def act(self, state):
 if np.random.rand() < self.epsilon:
 # explore - do random action
 return self.action_space.sample()

 # exploit
 q_values = self.q_model.predict(state)
 # select the action with max Q-value
 return np.argmax(q_values[0])

 # store experiences in the replay buffer
 def remember(self, state, action, reward, next_state, done):
 item = (state, action, reward, next_state, done)
 self.memory.append(item)

Deep Reinforcement Learning

[300]

 # compute Q_max
 # use of target Q Network solves the non-stationarity problem
 def get_target_q_value(self, next_state):
 # max Q value among next state's actions
 if self.ddqn:
 # DDQN
 # current Q Network selects the action
 # a'_max = argmax_a' Q(s', a')
 action = np.argmax(self.q_model.predict(next_state)[0])
 # target Q Network evaluates the action
 # Q_max = Q_target(s', a'_max)
 q_value = self.target_q_model.predict(next_state)[0]
[action]
 else:
 # DQN chooses the max Q value among next actions
 # selection and evaluation of action is on the
		 # target Q Network
 # Q_max = max_a' Q_target(s', a')
 q_value = np.amax(self.target_q_model.predict(next_state)
[0])

 # Q_max = reward + gamma * Q_max
 q_value *= self.gamma
 q_value += reward
 return q_value

 # experience replay addresses the correlation issue between
samples
 def replay(self, batch_size):
 # sars = state, action, reward, state' (next_state)
 sars_batch = random.sample(self.memory, batch_size)
 state_batch, q_values_batch = [], []

 # fixme: for speedup, this could be done on the tensor level
 # but easier to understand using a loop
 for state, action, reward, next_state, done in sars_batch:
 # policy prediction for a given state
 q_values = self.q_model.predict(state)

 # get Q_max
 q_value = self.get_target_q_value(next_state)

Chapter 9

[301]

 # correction on the Q value for the action used
 q_values[0][action] = reward if done else q_value

 # collect batch state-q_value mapping
 state_batch.append(state[0])
 q_values_batch.append(q_values[0])

 # train the Q-network
 self.q_model.fit(np.array(state_batch),
 np.array(q_values_batch),
 batch_size=batch_size,
 epochs=1,
 verbose=0)

 # update exploration-exploitation probability
 self.update_epsilon()
 # copy new params on old target after every 10 training
updates
 if self.replay_counter % 10 == 0:
 self.update_weights()

 self.replay_counter += 1

 # decrease the exploration, increase exploitation
 def update_epsilon(self):
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

Listing 9.6.2, dqn-cartpole-9.6.1.py. Training loop of DQN implementation
in Keras:

Q-Learning sampling and fitting
for episode in range(episode_count):
 state = env.reset()
 state = np.reshape(state, [1, state_size])
 done = False
 total_reward = 0
 while not done:
 # in CartPole-v0, action=0 is left and action=1 is right
 action = agent.act(state)
 next_state, reward, done, _ = env.step(action)
 # in CartPole-v0:
 # state = [pos, vel, theta, angular speed]
 next_state = np.reshape(next_state, [1, state_size])

Deep Reinforcement Learning

[302]

 # store every experience unit in replay buffer
 agent.remember(state, action, reward, next_state, done)
 state = next_state
 total_reward += reward

 # call experience relay
 if len(agent.memory) >= batch_size:
 agent.replay(batch_size)

 scores.append(total_reward)
 mean_score = np.mean(scores)
 if mean_score >= win_reward[args.env_id] and episode >= win_
trials:
 print("Solved in episode %d: Mean survival = %0.2lf in %d
episodes"
 % (episode, mean_score, win_trials))
 print("Epsilon: ", agent.epsilon)
 agent.save_weights()
 break
 if episode % win_trials == 0:
 print("Episode %d: Mean survival = %0.2lf in %d episodes" %
 (episode, mean_score, win_trials))

Double Q-Learning (DDQN)
In DQN, the target Q-Network selects and evaluates every action resulting in an
overestimation of Q value. To resolve this issue, DDQN [3] proposes to use the
Q-Network to choose the action and use the target Q-Network to evaluate the action.

In DQN as summarized by Algorithm 9.6.1, the estimate of the Q value in line 10 is:

()
1

1

max
1 1 1

1

max , ;
j

j

j target j j
a

r if episodeterminates at j
Q r Q s a otherwiseγ θ

+

+

−
+ + +

 +   = +    

Qtarget chooses and evaluates the action aj+1.

DDQN proposes to change line 10 to:

Chapter 9

[303]

()
1

1

max
1 1 1 1

1

,argmax , ; ;
j

j

j target j j j
a

r if episodeterminates at j
Q

r Q s Q s a otherwiseγ θ θ
+

+

−
+ + + +

 +     =  +        

The term ()
1

1 1argmax , ;
j

j j
a

Q s a θ
+

+ + lets Q to choose the action. Then this action is evaluated
by Qtarget.

In Listing 9.6.1, both DQN and DDQN are implemented. Specifically, for DDQN,
the modification on the Q value computation performed by get_target_q_value()
function is highlighted:

compute Q_max
use of target Q Network solves the non-stationarity problem
def get_target_q_value(self, next_state):
 # max Q value among next state's actions
 if self.ddqn:
 # DDQN
 # current Q Network selects the action
 # a'_max = argmax_a' Q(s', a')
 action = np.argmax(self.q_model.predict(next_state)[0])
 # target Q Network evaluates the action
 # Q_max = Q_target(s', a'_max)
 q_value = self.target_q_model.predict(next_state)[0][action]
 else:
 # DQN chooses the max Q value among next actions
 # selection and evaluation of action is on the target Q
Network
 # Q_max = max_a' Q_target(s', a')
 q_value = np.amax(self.target_q_model.predict(next_state)[0])

 # Q_max = reward + gamma * Q_max
 q_value *= self.gamma
 q_value += reward
 return q_value

For comparison, on the average of 10 runs, the CartPole-v0 is solved by DDQN
within 971 episodes. To use DDQN, run:

$ python3 dqn-cartpole-9.6.1.py -d

Deep Reinforcement Learning

[304]

Conclusion
In this chapter, we've been introduced to DRL. A powerful technique believed
by many researchers as the most promising lead towards artificial intelligence.
Together, we've gone over the principles of RL. RL is able to solve many toy
problems, but the Q-Table is unable to scale to more complex real-world problems.
The solution is to learn the Q-Table using a deep neural network. However, training
deep neural networks on RL is highly unstable due to sample correlation and non-
stationarity of the target Q-Network.

DQN proposed a solution to these problems using experience replay and separating
the target network from the Q-Network under training. DDQN suggested further
improvement of the algorithm by separating the action selection from action
evaluation to minimize the overestimation of Q value. There are other improvements
proposed for the DQN. Prioritized experience replay [6] argues that that experience
buffer should not be sampled uniformly. Instead, experiences that are more
important based on TD errors should be sampled more frequently to accomplish
more efficient training. [7] proposes a dueling network architecture to estimate the
state value function and the advantage function. Both functions are used to estimate
the Q value for faster learning.

The approach presented in this chapter is value iteration/fitting. The policy is
learned indirectly by finding an optimal value function. In the next chapter, the
approach will be to learn the optimal policy directly by using a family of algorithms
called policy gradient methods. Learning the policy has many advantages. In
particular, policy gradient methods can deal with both discrete and continuous
action spaces.

Chapter 9

[305]

References
1.	 Sutton and Barto. Reinforcement Learning: An Introduction, 2017

(http://incompleteideas.net/book/bookdraft2017nov5.pdf).
2.	 Volodymyr Mnih and others, Human-level control through deep reinforcement

learning. Nature 518.7540, 2015: 529 (http://www.davidqiu.com:8888/
research/nature14236.pdf)

3.	 Hado Van Hasselt, Arthur Guez, and David Silver Deep Reinforcement
Learning with Double Q-Learning. AAAI. Vol. 16, 2016 (http://www.aaai.
org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847).

4.	 Kai Arulkumaran and others A Brief Survey of Deep Reinforcement
Learning. arXiv preprint arXiv:1708.05866, 2017 (https://arxiv.org/
pdf/1708.05866.pdf).

5.	 David Silver Lecture Notes on Reinforcement Learning, (http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching.html).

6.	 Tom Schaul and others. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015 (https://arxiv.org/pdf/1511.05952.pdf).

7.	 Ziyu Wang and others. Dueling Network Architectures for Deep Reinforcement
Learning. arXiv preprint arXiv:1511.06581, 2015 (https://arxiv.org/
pdf/1511.06581.pdf).

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://arxiv.org/pdf/1708.05866.pdf
https://arxiv.org/pdf/1708.05866.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/1511.06581.pdf
https://arxiv.org/pdf/1511.06581.pdf

[307]

Policy Gradient Methods
In the final chapter of this book, we're going to introduce algorithms that
directly optimize the policy network in reinforcement learning. These algorithms
are collectively referred to as policy gradient methods. Since the policy network
is directly optimized during training, the policy gradient methods belong to the
family of on-policy reinforcement learning algorithms. Like value-based methods
that we discussed in Chapter 9, Deep Reinforcement Learning, policy gradient
methods can also be implemented as deep reinforcement learning algorithms.

A fundamental motivation in studying the policy gradient methods is addressing
the limitations of Q-Learning. We'll recall that Q-Learning is about selecting the
action that maximizes the value of the state. With Q function, we're able to determine
the policy that enables the agent to decide on which action to take for a given state.
The chosen action is simply the one that gives the agent the maximum value. In
this respect, Q-Learning is limited to a finite number of discrete actions. It's not able
to deal with continuous action space environments. Furthermore, Q-Learning is not
directly optimizing the policy. In the end, reinforcement learning is about finding
that optimal policy that the agent will be able to use to decide on which action it
should take in order to maximize the return.

In contrast, policy gradient methods are applicable to environments with discrete or
continuous action spaces. In addition, the four policy gradient methods that we will
be presenting in this chapter are directly optimizing the performance measure of the
policy network. This results in a trained policy network that the agent can use to act
in its environment optimally.

In summary, the goal of this chapter is to present:

•	 The policy gradient theorem
•	 Four policy gradient methods: REINFORCE, REINFORCE with baseline,

Actor-Critic, and Advantage Actor-Critic (A2C)
•	 A guide on how to implement the policy gradient methods in Keras

in a continuous action space environment

Policy Gradient Methods

[308]

Policy gradient theorem
As discussed in Chapter 9, Deep Reinforcement Learning, in Reinforcement Learning
the agent is situated in an environment that is in state st, an element of state space
S . The state space S may be discrete or continuous. The agent takes an action at from
the action space A by obeying the policy, ()t ta sπ . A may be discrete or continuous.
Because of executing the action at, the agent receives a reward rt+1 and the
environment transitions to a new state st+1. The new state is dependent only
on the current state and action. The goal of the agent is to learn an optimal
policy π∗ that maximizes the return from all the states:

targmax Rππ∗ = (Equation 9.1.1)

The return, tR , is defined as the discounted cumulative reward from time t until the
end of the episode or when the terminal state is reached:

()
0

T
k

t t t k
k

V s R rπ γ +
=

= =∑ (Equation 9.1.2)

From Equation 9.1.2, the return can also be interpreted as a value of a given state
by following the policy π . It can be observed from Equation 9.1.1 that future
rewards have lower weights compared to immediate rewards since generally

1.0kγ < where []0,1γ ∈ .

So far, we have only considered learning the policy by optimizing a value
based function, Q(s,a). Our goal in this chapter is to directly learn the policy by
parameterizing () (),t t t ta s a sπ π θ→ . By parameterization, we can use a neural
network to learn the policy function. Learning the policy means that we are going
to maximize a certain objective function, ()θJ which is a performance measure with
respect to parameter θ . In episodic reinforcement learning, the performance measure
is the value of the start state. In the continuous case, the objective function is the
average reward rate.

Maximizing the objective function ()θJ is achieved by performing gradient
ascent. In gradient ascent, the gradient update is in the direction of the derivative
of the function being optimized. So far, all our loss functions are optimized by
minimization or by performing gradient descent. Later, in the Keras implementation,
we're able to see that the gradient ascent can be performed by simply negating the
objective function and performing gradient descent.

The advantage of learning the policy directly is that it can be applied to both discrete
and continuous action spaces. For discrete action spaces:

Chapter 10

[309]

() ()| ,i t i ia s softmax a for aπ θ = ∈A (Equation 10.1.1)

In that formula, ai is the i-th action. ai can be the prediction of a neural network
or a linear function of state-action features:

(), T
i t ia s aφ θ= (Equation 10.1.2)

(),t is aφ is any function such as an encoder that converts the state-action to features.

(),i ta sπ θ determines the probability of each ai. For example, in the cartpole
balancing problem in the previous chapter, the goal is to keep the pole upright
by moving the cart along the 2D axis to the left or to the right. In this case, a0 and
a1 are the probabilities of the left and right movements respectively. In general,
the agent takes the action with the highest probability, ()max ,t i ti

a a sπ θ= .

For continuous action spaces, (),t ta sπ θ samples an action from a probability
distribution given the state. For example, if the continuous action space is the range
[]1.0,1.0ta ∈ − , then targmax Rππ∗ = is usually a Gaussian distribution whose mean

and standard deviation are predicted by the policy network. The predicted action
is a sample from this Gaussian distribution. To ensure that no invalid prediction
is generated, the action is clipped between -1.0 and 1.0.

Formally, for continuous action spaces, the policy is a sample from a Gaussian
distribution:

() () ()(), ~ ,t t t t ta s a s sπ θ µ σ= N (Equation 10.1.3)

The mean, µ , and standard deviation, σ , are both functions of the state features:

() ()Tt ts s µµ φ θ= (Equation 10.1.4)

() ()()T
t ts s σσ ς φ θ= (Equation 10.1.5)

()tsφ is any function that converts the state to its features. () ()log 1 xx eς = + is the
softplus function that ensures positive values of standard deviation. One way
of implementing the state feature function, ()tsφ , is using the encoder of an
autoencoder network. At the end of this chapter, we will train an autoencoder
and use the encoder part as the state feature function. Training a policy network
is therefore a matter of optimizing the parameters µ σθ θ θ =    .

Policy Gradient Methods

[310]

Given a continuously differentiable policy function, (),t ta sπ θ , the policy gradient
can be computed as:

()
()
()

() () ()
,

, , ,
,

t t
t t t t t t

t t

a s
Q s a ln a s Q s a

a s
θ π π

π π θ

π θ
θ π θ

π θ

 ∇   ∇ = = ∇      
E EJ (Equation 10.1.6)

Equation 10.1.6 is also known as the policy gradient theorem. It is applicable to both
discrete and continuous action spaces. The gradient with respect to the parameter θ
is computed from the natural logarithm of the policy action sampling scaled by the
Q value. Equation 10.1.6 takes advantage of the property of the natural logarithm,

Inx x
x
∇
=∇

.

Policy gradient theorem is intuitive in the sense that the performance gradient is
estimated from the target policy samples and proportional to the policy gradient.
The policy gradient is scaled by the Q value to encourage actions that positively
contribute to the state value. The gradient is also inversely proportional to the action
probability to penalize frequently occurring actions that do not contribute to the
increase of performance measure.

In the next section, we will demonstrate the different methods of estimating the
policy gradient.

For the proof of policy gradient theorem, please see [2] and lecture notes
from David Silver on Reinforcement Learning, http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

There are subtle advantages of policy gradient methods. For example, in some
card-based games, value-based methods have no straightforward procedure in
handling stochasticity, unlike policy-based methods. In policy-based methods, the
action probability changes smoothly with the parameters. Meanwhile, value-based
actions may suffer from drastic changes with respect to small changes in parameters.
Lastly, the dependence of policy-based methods on parameters leads us to different
formulations on how to perform gradient ascent on the performance measure. These
are the four policy gradient methods to be presented in the succeeding sections.

Policy-based methods have their own disadvantages as well. They are generally
harder to train because of the tendency to converge on a local optimum instead of the
global optimum. In the experiments to be presented at the end of this chapter, it is
easy for an agent to become comfortable and to choose actions that do not necessarily
give the highest value. Policy gradient is also characterized by high variance.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Chapter 10

[311]

The gradient updates are frequently overestimated. Furthermore, training policy-
based methods are time-consuming. The training requires thousands of episodes
(that is, not sample efficient). Each episode only provides a small number of samples.
Typical training in the implementation provided at the end of the chapter would
take about an hour for 1,000 episodes on a GTX 1060 GPU.

In the following sections, we discuss the four policy gradient methods. While the
discussion focuses on continuous action spaces, the concept is generally applicable
to discrete action spaces. Due to similarities in the implementation of the policy
and value networks of the four policy gradient methods, we will wait until the
end of this chapter to illustrate the implementation into Keras.

Monte Carlo policy gradient
(REINFORCE) method
The simplest policy gradient method is called REINFORCE [5],
this is a Monte Carlo policy gradient method:

() (),t t tR ln a sπ θθ π θ ∇ = ∇  EJ (Equation 10.2.1)

where Rt is the return as defined in Equation 9.1.2. Rt is an unbiased sample
of (),t tQ s aπ in the policy gradient theorem.

Algorithm 10.2.1 summarizes the REINFORCE algorithm [2]. REINFORCE is
a Monte Carlo algorithm. It does not require knowledge of the dynamics of the
environment (that is, model-free). Only experience samples, 1 1i i i is a r s+ + , are needed
to optimally tune the parameters of the policy network, (),t ta sπ θ . The discount factor,
γ , takes into consideration that rewards decrease in value as the number of steps
increases. The gradient is discounted by tγ . Gradients taken at later steps have
smaller contributions. The learning rate, α , is a scaling factor of the gradient update.

The parameters are updated by performing gradient ascent using the discounted
gradient and learning rate. As a Monte Carlo algorithm, REINFORCE requires that
the agent completes an episode before processing the gradient updates. Due to its
Monte Carlo nature, the gradient update of REINFORCE is characterized by high
variance. At the end of this chapter, we will implement the REINFORCE algorithm
into Keras.

Algorithm 10.2.1 REINFORCE

Require: A differentiable parameterized target policy network, (),t ta sπ θ .

Policy Gradient Methods

[312]

Require: Discount factor, []0,1γ ∈ and learning rate α . For example, 0.99γ = and
1 3eα = − .

Require: 0θ , initial policy network parameters (for example, 0 0θ →).

1.	 Repeat

2.	 Generate an episode ()0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −… by following
(),t ta sπ θ

3.	 for steps 0, , 1t T= −… do

4.	 Compute return,
0
rT k

t t kk
R γ +=
=∑

5.	 Compute discounted performance gradient, () ()In | ,t
t t tR a sθθ γ π θ∇ = ∇J

6.	 Perform gradient ascent, ()θ θ α θ= + ∇J

Figure 10.2.1: Policy network

In REINFORCE, the parameterized policy can be modeled by a neural network
as shown in Figure 10.2.1. As discussed in the previous section, for the case
of continuous action spaces, the state input is converted into features. The state
features are the inputs of the policy network. The Gaussian distribution representing
the policy function has a mean and standard deviation that are both functions of
the state features. The policy network, ()π θ , could be an MLP, CNN, or an RNN
depending on the nature of the state inputs. The predicted action is simply a sample
from the policy function.

Chapter 10

[313]

REINFORCE with baseline method
The REINFORCE algorithm can be generalized by subtracting a baseline from the
return, ()t tR B sδ= − . The baseline function, B(st) can be any function as long as it
does not depend on at The baseline does not alter the expectation of the performance
gradient:

() ()() () (), ,t t t t t t tR B s ln a s R ln a sπ θ π θθ π θ π θ   ∇ = − ∇ = ∇      E EJ (Equation 10.3.1)

Equation 10.3.1 implies that () (), 0t t tB s ln a sπ θ π θ ∇ =  E since ()tB s is not a function
of ta .

While the introduction of baseline does not change the expectation, it reduces the
variance of the gradient updates. The reduction in variance generally accelerates
learning. In most cases, we use the value function, () ()t tB s V s= as the baseline. If the
return is overestimated, the scaling factor is proportionally reduced by the value
function resulting to a lower variance. The value function is also parameterized,
() (),t t vV s V s θ→ and is jointly trained with the policy network. In continuous action

spaces, the state value can be a linear function of state features:

() (), T
t t v t vv V s sθ φ θ= = (Equation 10.3.2)

Algorithm 10.3.1 summarizes the REINFORCE with baseline method [1]. This is
similar to REINFORCE except that the return is replaced by S . The difference is we
are now training two neural networks. As shown in Figure 10.3.1, in addition to the
policy network, ()π θ , the value network, ()V θ , is also trained at the same time. The
policy network parameters are updated by the performance gradient, ()θ∇J , while
the value network parameters are adjusted by the value gradient, ()vV θ∇ . Since
REINFORCE is a Monte Carlo algorithm, it follows that the value function training
is also a Monte Carlo algorithm.

The learning rates are not necessarily the same. Note that the value network is
also performing gradient ascent. We illustrate how to implement REINFORCE
with baseline using Keras at the end of this chapter.

Algorithm 10.3.1 REINFORCE with baseline

Require: A differentiable parameterized target policy network, (),t ta sπ θ .

Require: A differentiable parameterized value network, (),t vV s θ .

Policy Gradient Methods

[314]

Require: Discount factor, []0,1γ ∈ , the learning rate α for the performance gradient
and learning rate for the value gradient, vα .

Require: 0θ , initial policy network parameters (for example, 0 0θ →).
0vθ , initial value

network parameters (for example, 0 0vθ →).

1.	 Repeat

2.	 Generate an episode 0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −… by following
(),t ta sπ θ

3.	 for steps 0, , 1t T= −… do

4.	 Compute return,
0

T k
t t kk
R rγ +=
=∑

5.	 Subtract baseline, (),t t vR V sδ θ= −

6.	 Compute discounted value gradient, () (),
v

t
v t vV V sθθ γ δ θ∇ = ∇

7.	 Perform gradient ascent, ()v v v va Vθ θ θ= + ∇
8.	 Compute discounted performance gradient,

() (),t
t tln a sθθ γ δ π θ∇ = ∇J

9.	 Perform gradient ascent, ()aθ θ θ= + ∇J

Figure 10.3.1: Policy and value networks

Chapter 10

[315]

Actor-Critic method
In REINFORCE with baseline method, the value is used as a baseline. It is not used
to train the value function. In this section, we'll introduce a variation of REINFORCE
with baseline called the Actor-Critic method. The policy and value networks played
the roles of actor and critic networks. The policy network is the actor deciding
which action to take given the state. Meanwhile, the value network evaluates the
decision made by the actor or the policy network. The value network acts as a
critic which quantifies how good or bad the chosen action made by the actor is.
The value network evaluates the state value, (), vV s θ , by comparing it with the sum
of the received reward, r , and the discounted value of the observed next state,
(), vV sγ θ′ . The difference, δ , is expressed as:

() () () ()1 1, , , ,t t v t v v vr V s V s r V s V sδ γ θ θ γ θ θ+ + ′= + − = + − (Equation 10.4.1)

where we dropped the subscripts of r and s for simplicity. Equation 10.4.1 is similar
to the temporal differencing in Q-Learning discussed in Chapter 9, Deep Reinforcement
Learning. The next state value is discounted by []0,1γ ∈ Estimating distant future
rewards is difficult. Therefore, our estimate is based only on the immediate future,

(), vr V sγ θ′+ . This has been known as bootstrapping technique. The bootstrapping
technique and the dependence on state representation in Equation 10.4.1 often
accelerates learning and reduces variance. From Equation 10.4.1, we notice that the
value network evaluates the current state, ts s= , which is due to the previous action,

1ta − , of the policy network. Meanwhile, the policy gradient is based on the current
action, ta . In a sense, the evaluation is delayed by one step.

Algorithm 10.4.1 summarizes the Actor-Critic method [1]. Apart from the evaluation
of the state value which is used to train both the policy and value networks, the
training is done online. At every step, both networks are trained. This is unlike
REINFORCE and REINFORCE with baseline where the agent completes an episode
before the training is performed. The value network is consulted twice. Firstly,
during the value estimate of the current state and secondly for the value of the next
state. Both values are used in the computation of gradients. Figure 10.4.1 shows the
Actor-Critic network. We will implement the Actor-Critic method in Keras at the end
of this chapter.

Algorithm 10.4.1 Actor-Critic

Require: A differentiable parameterized target policy network, (),a sπ θ .

Require: A differentiable parameterized value network, (), vV s θ .

Policy Gradient Methods

[316]

Require: Discount factor, []0,1γ ∈ , the learning rate α for the performance gradient,
and the learning rate for the value gradient, vα .

Require: 0θ , initial policy network parameters (for example, 0 0θ →). 0vθ , initial value
network parameters (for example, 0 0vθ →).

1.	 Repeat
2.	 for steps 0, , 1t T= −… do

3.	 Sample an action ()~ ,a a sπ θ

4.	 Execute the action and observe reward r and next state s′
5.	 Evaluate state value estimate, () (), ,v vr V s V sδ γ θ θ′= + −

6.	 Compute discounted value gradient, () (),
v

t
v vV V sθθ γ δ θ∇ = ∇

7.	 Perform gradient ascent, ()v v v vVθ θ α θ= + ∇

8.	 Compute discounted performance gradient, () (),t ln a sθθ γ δ π θ∇ = ∇J

9.	 Perform gradient ascent, ()Jθ θ α θ= + ∇

10.	 s s′=

Figure 10.4.1: Actor-critic network

Chapter 10

[317]

Advantage Actor-Critic (A2C) method
In the Actor-Critic method from the previous section, the objective is for the value
function to evaluate the state value correctly. There are other techniques to train
the value network. One obvious method is to use MSE (mean squared error) in the
value function optimization, similar to the algorithm in Q-Learning. The new value
gradient is equal to the partial derivative of the MSE between the return, tR , and the
state value:

()
()()2,t v

v
v

R V s
V

δ θ
θ

δθ

−
∇ = (Equation 10.5.1)

As ()(), 0t vR V s θ− → , the value network prediction gets more accurate. We call this
variation of the Actor-Critic algorithm as A2C. A2C is a single threaded or
synchronous version of the Asynchronous Advantage Actor-Critic (A3C)
by [2]. The quantity ()(),t vR V s θ− is called Advantage.

Algorithm 10.5.1 summarizes the A2C method. There are some differences between
A2C and Actor-Critic. Actor-Critic is online or is trained on per experience sample.
A2C is similar to Monte Carlo algorithms REINFORCE and REINFORCE with
baseline. It is trained after one episode has been completed. Actor-Critic is trained
from the first state to the last state. A2C training starts from the last state and ends
on the first state. In addition, the A2C policy and value gradients are no longer
discounted by tγ .

The corresponding network for A2C is similar to Figure 10.4.1 since we
only changed the method of gradient computation. To encourage agent
exploration during training, A3C algorithm [2] suggests that the gradient
of the weighted entropy value of the policy function is added to the gradient
function, ()()| ,t tH a sθβ π θ∇ . Recall that entropy is a measure of information
or uncertainty of an event.

Algorithm 10.5.1 Advantage Actor-Critic (A2C)

Require: A differentiable parameterized target policy network, (),t ta sπ θ .

Require: A differentiable parameterized value network, (),t vV s θ .

Require: Discount factor, []0,1γ ∈ , the learning rate α for the performance gradient,
the learning rate for the value gradient, vα and entropy weight, β .

Policy Gradient Methods

[318]

Require: 0θ , initial policy network parameters (for example, 0 0θ →). 0vθ , initial value
network parameters (for example, 0 0vθ →).

1.	 Repeat

2.	 Generate an episode 0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −… by following
(),t ta sπ θ

3.	 ()
0
, , ,

T
t

T v T

if s is terminal
R

V s for non terminal s bootstrap fromlast stateθ

   =  −  

4.	 for steps 1, ,0t T= − … do

5.	 Compute return, t t tR r Rγ= +

6.	 Compute value gradient, ()
()()2,t v

v
v

R V s
V

θ
θ

θ

∂ −
∇ =

∂

7.	 Accumulate gradient, ()v v v va Vθ θ θ= + ∇
8.	 Compute performance gradient,

() () ()() ()(), , ,t t t v t tln a s R V s H a sθ θθ π θ θ β π θ∇ =∇ − + ∇J

9.	 Perform gradient ascent, ()aθ θ θ= + ∇J

Policy Gradient methods with Keras
The four policy gradient methods (Algorithms 10.2.1 to 10.5.1) discussed in the
previous sections use identical policy and value network models. The policy and
value networks in Figures 10.2.1 to 10.4.1 have the same configurations. The four
policy gradient methods differ only in:

•	 Performance and value gradients formula
•	 Training strategy

In this section, we discuss the implementation in Keras of Algorithms 10.2.1 to 10.5.1
in one code, since they share many common routines.

The complete code can be found on https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

But before discussing the implementation, let's briefly explore the training
environment.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 10

[319]

Figure 10.6.1 MountainCarContinuous-v0 OpenAI gym environment

Unlike Q-Learning, policy gradient methods are applicable to both discrete and
continuous action spaces. In our example, we'll demonstrate the four policy gradient
methods on a continuous action space case example, MountainCarContinuous-v0
of OpenAI gym, https://gym.openai.com. In case you are not familiar with
OpenAI gym, please see Chapter 9, Deep Reinforcement Learning.

A snapshot of MountainCarContinuous-v0 2D environment is shown in Figure
10.6.1. In this 2D environment, a car with a not too powerful engine is between two
mountains. In order to reach the yellow flag on top of the mountain on the right, it
must drive back and forth to gain enough momentum. The more energy (that is, the
greater the absolute value of action) that is applied to the car, the smaller (or, the
more negative) is the reward. The reward is always negative, and it is only positive
upon reaching the flag. In that case, the car receives a reward of +100. However,
every action is penalized by the following code:

reward-= math.pow(action[0],2)*0.1

The continuous range of valid action values is [-1.0, 1.0]. Beyond the range,
the action is clipped to its minimum or maximum value. Therefore, it makes
no sense to apply an action value that is greater than 1.0 or less than -1.0.
The MountainCarContinuous-v0 environment state has two elements:

•	 Car position
•	 Car velocity

https://gym.openai.com

Policy Gradient Methods

[320]

The state is converted to state features by an encoder. The predicted action is the
output of the policy model given the state. The output of the value function is the
predicted value of the state:

Figure 10.6.2 Autoencoder model

Figure 10.6.3 Encoder model

Chapter 10

[321]

Figure 10.6.4 Decoder model

As shown in Figures 10.2.1 to 10.4.1, before building the policy and value networks,
we must first create a function that converts the state to features. This function is
implemented by an encoder of an autoencoder similar to the ones implemented in
Chapter 3, Autoencoders. Figure 10.6.2 shows an autoencoder made of an encoder and
a decoder. In Figure 10.6.3, the encoder is an MLP made of Input(2)-Dense(256,
activation='relu')-Dense(128, activation='relu')-Dense(32). Every
state is converted into a 32-dim feature vector. In Figure 10.6.4, the decoder is also
an MLP but made of Input(32)-Dense(128, activation='relu')-Dense(256,
activation='relu')-Dense(2). The autoencoder is trained for 10 epochs with an
MSE, loss function, and Keras default Adam optimizer. We sampled 220,000 random
states for the train and test dataset and applied 200k/20k train-test split. After training,
the encoder weights are saved for future use in the policy and value networks training.
Listing 10.6.1 shows the methods for building and training the autoencoder.

Listing 10.6.1, policygradient-car-10.1.1.py shows us the methods for building
and training the autoencoder:

autoencoder to convert states into features
def build_autoencoder(self):
 # first build the encoder model
 inputs = Input(shape=(self.state_dim,), name='state')
 feature_size = 32
 x = Dense(256, activation='relu')(inputs)
 x = Dense(128, activation='relu')(x)
 feature = Dense(feature_size, name='feature_vector')(x)

 # instantiate encoder model

Policy Gradient Methods

[322]

 self.encoder = Model(inputs, feature, name='encoder')
 self.encoder.summary()
 plot_model(self.encoder, to_file='encoder.png',
show_shapes=True)

 # build the decoder model
 feature_inputs = Input(shape=(feature_size,),
name='decoder_input')
 x = Dense(128, activation='relu')(feature_inputs)
 x = Dense(256, activation='relu')(x)
 outputs = Dense(self.state_dim, activation='linear')(x)

 # instantiate decoder model
 self.decoder = Model(feature_inputs, outputs, name='decoder')
 self.decoder.summary()
 plot_model(self.decoder, to_file='decoder.png',
show_shapes=True)

 # autoencoder = encoder + decoder
 # instantiate autoencoder model
 self.autoencoder = Model(inputs,
self.decoder(self.encoder(inputs)), name='autoencoder')
 self.autoencoder.summary()
 plot_model(self.autoencoder, to_file='autoencoder.png',
show_shapes=True)

 # Mean Square Error (MSE) loss function, Adam optimizer
 self.autoencoder.compile(loss='mse', optimizer='adam')

training the autoencoder using randomly sampled
states from the environment
def train_autoencoder(self, x_train, x_test):
 # train the autoencoder
 batch_size = 32
 self.autoencoder.fit(x_train,
 x_train,
 validation_data=(x_test, x_test),
 epochs=10,
 batch_size=batch_size)

Chapter 10

[323]

Figure 10.6.5: Policy model (actor model)

Given the MountainCarContinuous-v0 environment, the policy (or actor)
model predicts the action that must be applied on the car. As discussed in
the first section of this chapter on policy gradient methods, for continuous
action spaces the policy model samples an action from a Gaussian distribution,
() () ()(), ~ ,t t t t ta s a s sπ θ µ σ= N . In Keras, this is implemented as:

 # given mean and stddev, sample an action, clip and return
 # we assume Gaussian distribution of probability of selecting
an
 # action given a state
 def action(self, args):
 mean, stddev = args
 dist = tf.distributions.Normal(loc=mean, scale=stddev)
 action = dist.sample(1)
 action = K.clip(action,
 self.env.action_space.low[0],
 self.env.action_space.high[0])
 return action

The action is clipped between its minimum and maximum possible values.

The role of the policy network is to predict the mean and standard deviation of the
Gaussian distribution. Figure 10.6.5 shows the policy network to model (),t ta sπ θ . It's
worth noting that the encoder model has pretrained weights that are frozen. Only
the mean and standard deviation weights receive the performance gradient updates.

Policy Gradient Methods

[324]

The policy network is basically the implementation of Equations 10.1.4 and 10.1.5 that
are repeated here for convenience:

() ()Tt ts s µµ φ θ= (Equation 10.1.4)

() ()()T
t ts s σσ ς φ θ= (Equation 10.1.5)

where ()tsφ is the encoder, µθ are the weights of the mean's Dense(1) layer, and
σθ are the weights of the standard deviation's Dense(1) layer. We used a modified

softplus function, ()ς ⋅ , to avoid zero standard deviation:

some implementations use a modified softplus to ensure that
the stddev is never zero
def softplusk(x):
 return K.softplus(x) + 1e-10

The policy model builder is shown in the following listing. Also included in this
listing are the log probability, entropy, and value models which we will discuss next.

Listing 10.6.2, policygradient-car-10.1.1.py shows us the method for building
the policy (actor), logp, entropy, and value models from the encoded state features:

def build_actor_critic(self):
 inputs = Input(shape=(self.state_dim,), name='state')
 self.encoder.trainable = False
 x = self.encoder(inputs)
 mean = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='mean')(x)
 stddev = Dense(1,
 kernel_initializer='zero',
 name='stddev')(x)
 # use of softplusk avoids stddev = 0
 stddev = Activation('softplusk', name='softplus')(stddev)
 action = Lambda(self.action,
 output_shape=(1,),
 name='action')([mean, stddev])
 self.actor_model = Model(inputs, action, name='action')
 self.actor_model.summary()
 plot_model(self.actor_model, to_file='actor_model.png',
show_shapes=True)

Chapter 10

[325]

 logp = Lambda(self.logp,
 output_shape=(1,),
 name='logp')([mean, stddev, action])
 self.logp_model = Model(inputs, logp, name='logp')
 self.logp_model.summary()
 plot_model(self.logp_model, to_file='logp_model.png', show_
shapes=True)

 entropy = Lambda(self.entropy,
 output_shape=(1,),
 name='entropy')([mean, stddev])
 self.entropy_model = Model(inputs, entropy, name='entropy')
 self.entropy_model.summary()
 plot_model(self.entropy_model, to_file='entropy_model.png', show_
shapes=True)
 value = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='value')(x)
 self.value_model = Model(inputs, value, name='value')
 self.value_model.summary()

Figure 10.6.6: Gaussian log probability model of the policy

Policy Gradient Methods

[326]

Figure 10.6.7: Entropy model

Apart from the policy network, (),t ta sπ θ , we must also have the action log probability
(logp) network ()In | ,t ta sπ θ since this is actually what calculates the gradient. As
shown in Figure 10.6.6, the logp network is simply the policy network where an
additional Lambda(1) layer computes the log probability of the Gaussian distribution
given action, mean, and standard deviation. The logp network and actor (policy)
model share the same set of parameters. The Lambda layer does not have any
parameter. It is implemented by the following function:

 # given mean, stddev, and action compute
 # the log probability of the Gaussian distribution
 def logp(self, args):
 mean, stddev, action = args
 dist = tf.distributions.Normal(loc=mean, scale=stddev)
 logp = dist.log_prob(action)
 return logp

Training the logp network trains the actor model as well. In the training methods
that are discussed in this section, only the logp network is trained.

As shown in Figure 10.6.7, the entropy model also shares parameters with the
policy network. The output Lambda(1) layer computes the entropy of the Gaussian
distribution given the mean and standard deviation using the following function:

 # given the mean and stddev compute the Gaussian dist entropy
 def entropy(self, args):

Chapter 10

[327]

 mean, stddev = args
 dist = tf.distributions.Normal(loc=mean, scale=stddev)
 entropy = dist.entropy()
 return entropy

The entropy model is only used by the A2C method:

Figure 10.6.8: A value model

Preceding figure shows the value model. The model also uses the pre-trained
encoder with frozen weights to implement following equation which is repeated
here for convenience:

() (), T
t t v t vv V s sθ φ θ= = (Equation 10.3.2)

vθ are the weights of the Dense(1) layer, the only layer that receives value gradient
updates. Figure 10.6.8 represents (),t vV s θ in Algorithms 10.3.1 to 10.5.1. The value
model can be built in a few lines:

inputs = Input(shape=(self.state_dim,), name='state')
self.encoder.trainable = False
x = self.encoder(inputs)

value = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='value')(x)
self.value_model = Model(inputs, value, name='value')

These lines are also implemented in method build_actor_critic(), which is
shown in Listing 10.6.2.

Policy Gradient Methods

[328]

After building the network models, the next step is training. In Algorithms 10.2.1 to
10.5.1, we perform objective function maximization by gradient ascent. In Keras, we
perform loss function minimization by gradient descent. The loss function is simply
the negative of the objective function being maximized. The gradient descent is the
negative of gradient ascent. Listing 10.6.3 shows the logp and value loss functions.

We can take advantage of the common structure of the loss functions to unify the loss
functions in Algorithms 10.2.1 to 10.5.1. The performance and value gradients differ
only in their constant factors. All performance gradients have the common term,

()In | ,t ta sθ π θ∇ . This is represented by y_pred in the policy log probability loss
function, logp_loss(). The factor to the common term, ()In | ,t ta sθ π θ∇ , depends
on which algorithm and is implemented as y_true. Table 10.6.1 shows the values
of y_true. The remaining term is the weighted gradient of entropy, ()()| ,t tH a sθβ π θ∇
. It is implemented as the product of beta and entropy in the logp_loss() function.
Only A2C uses this term, so by default, beta=0.0. For A2C, beta=0.9.

Listing 10.6.3, policygradient-car-10.1.1.py: The loss functions of logp and
value networks.

logp loss, the 3rd and 4th variables (entropy and beta) are needed
by A2C so we have a different loss function structure
def logp_loss(self, entropy, beta=0.0):
 def loss(y_true, y_pred):
 return -K.mean((y_pred * y_true) + (beta * entropy), ax
is=-1)

 return loss

typical loss function structure that accepts 2 arguments only
this will be used by value loss of all methods except A2C
def value_loss(self, y_true, y_pred):
 return -K.mean(y_pred * y_true, axis=-1)

Algorithm y_true of logp_loss y_true of value_loss

10.2.1 REINFORCE t
tRγ

Not applicable

10.3.1 REINFORCE with baseline tγ δ tγ δ

10.4.1 Actor-Critic tγ δ tγ δ

10.5.1 A2C ()(),t vR V s θ− tR

Table 10.6.1: y_true value of logp_loss and value_loss

Chapter 10

[329]

Similarly, the value loss functions of Algorithms 10.3.1 and 10.4.1 have the same
structure. The value loss functions are implemented in Keras as value_loss() as
shown in Listing 10.6.3. The common gradient factor (),

v t vV sθ θ∇ is represented
by the tensor y_pred. The remaining factor is represented by y_true. The y_true
values are also shown in Table 10.6.1. REINFORCE does not use a value function.
A2C uses the MSE loss function to learn the value function. In A2C, y_true
represents the target value or ground truth.

Listing 10.6.4, policygradient-car-10.1.1.py shows us, REINFORCE,
REINFORCE with baseline, and A2C are trained by episode. The appropriate
return is computed first before calling the main train routine in Listing 10.6.5:

train by episode (REINFORCE, REINFORCE with baseline
and A2C use this routine to prepare the dataset before
the step by step training)
def train_by_episode(self, last_value=0):
 if self.args.actor_critic:
 print("Actor-Critic must be trained per step")
 return
 elif self.args.a2c:
 # implements A2C training from the last state
 # to the first state
 # discount factor
 gamma = 0.95
 r = last_value
 # the memory is visited in reverse as shown
 # in Algorithm 10.5.1
 for item in self.memory[::-1]:
 [step, state, next_state, reward, done] = item
 # compute the return
 r = reward + gamma*r
 item = [step, state, next_state, r, done]
 # train per step
 # a2c reward has been discounted
 self.train(item)

 return

 # only REINFORCE and REINFORCE with baseline
 # use the ff codes
 # convert the rewards to returns
 rewards = []
 gamma = 0.99
 for item in self.memory:

Policy Gradient Methods

[330]

 [_, _, _, reward, _] = item
 rewards.append(reward)

 # compute return per step
 # return is the sum of rewards from t til end of episode
 # return replaces reward in the list
 for i in range(len(rewards)):
 reward = rewards[i:]
 horizon = len(reward)
 discount = [math.pow(gamma, t) for t in range(horizon)]
 return_ = np.dot(reward, discount)
 self.memory[i][3] = return_

 # train every step
 for item in self.memory:
 self.train(item, gamma=gamma)

Listing 10.6.5, policygradient-car-10.1.1.py shows us the main train routine
used by all the policy gradient algorithms. Actor-critic calls this every experience
sample while the rest call this during train per episode routine in Listing 10.6.4:

main routine for training as used by all 4 policy gradient
methods
def train(self, item, gamma=1.0):
 [step, state, next_state, reward, done] = item

 # must save state for entropy computation
 self.state = state

 discount_factor = gamma**step

 # reinforce-baseline: delta = return - value
 # actor-critic: delta = reward - value + discounted_next_value
 # a2c: delta = discounted_reward - value
 delta = reward - self.value(state)[0]

 # only REINFORCE does not use a critic (value network)
 critic = False
 if self.args.baseline:
 critic = True
 elif self.args.actor_critic:
 # since this function is called by Actor-Critic
 # directly, evaluate the value function here
 critic = True
 if not done:

Chapter 10

[331]

 next_value = self.value(next_state)[0]
 # add the discounted next value
 delta += gamma*next_value
 elif self.args.a2c:
 critic = True
 else:
 delta = reward

 # apply the discount factor as shown in Algortihms
 # 10.2.1, 10.3.1 and 10.4.1
 discounted_delta = delta * discount_factor
 discounted_delta = np.reshape(discounted_delta, [-1, 1])
 verbose = 1 if done else 0

 # train the logp model (implies training of actor model
 # as well) since they share exactly the same set of
 # parameters
 self.logp_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

 # in A2C, the target value is the return (reward
 # replaced by return in the train_by_episode function)
 if self.args.a2c:
 discounted_delta = reward
 discounted_delta = np.reshape(discounted_delta, [-1, 1])

 # train the value network (critic)
 if critic:
 self.value_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

With all network models and loss functions in place, the last part is the training
strategy, which is different for each algorithm. Two train functions are used as
shown in Listings 10.6.4 and 10.6.5. Algorithms 10.2.1, 10.3.1, and 10.5.1 wait for
a complete episode to finish before training, so it runs both train_by_episode()
and train(). The complete episode is saved in self.memory. Actor-Critic Algorithm
10.4.1 trains per step and only runs train().

Policy Gradient Methods

[332]

Each algorithm processes its episode trajectory in a different way.

Algorithm y_true formula y_true in Keras
10.2.1 REINFORCE t

tRγ
reward * discount_factor

10.3.1 REINFORCE
with baseline

tγ δ (reward - self.value(state)[0]) *
discount_factor

10.4.1 Actor-Critic tγ δ (reward - self.value(state)[0]
+ gamma*next_value) * discount_
factor

10.5.1 A2C ()(),t vR V s θ−

and tR

(reward - self.value(state)[0])

and
reward

Table 10.6.2: y_true value in Table 10.6.1

For REINFORCE methods and A2C, the reward is actually the return as computed in
train_by_episode(). discount_factor = gamma**step.

Both REINFORCE methods compute the return,
0
rT k

t t kk
R γ +=
=∑ , by replacing the

reward value in the memory as:

 # only REINFORCE and REINFORCE with baseline
 # use the ff codes
 # convert the rewards to returns
 rewards = []
 gamma = 0.99
 for item in self.memory:
 [_, _, _, reward, _] = item
 rewards.append(reward)

 # compute return per step
 # return is the sum of rewards from t til end of episode
 # return replaces reward in the list
 for i in range(len(rewards)):
 reward = rewards[i:]
 horizon = len(reward)
 discount = [math.pow(gamma, t) for t in range(horizon)]
 return_ = np.dot(reward, discount)
 self.memory[i][3] = return_

This then trains the policy (actor) and value models (with baseline only) for each step
beginning with the first step.

Chapter 10

[333]

The training strategy of A2C is different in the sense that it computes gradients from
the last step to the first step. Hence, the return accumulates beginning from the last
step reward or the last next state value:

 # the memory is visited in reverse as shown
 # in Algorithm 10.5.1
 for item in self.memory[::-1]:
 [step, state, next_state, reward, done] = item
 # compute the return
 r = reward + gamma*r
 item = [step, state, next_state, r, done]
 # train per step
 # a2c reward has been discounted
 self.train(item)

The reward variable in the list is also replaced by return. It is initialized by reward
if the terminal state is reached (that is, the car touches the flag) or the next state value
for non-terminal states:

v = 0 if reward > 0 else agent.value(next_state)[0]

In the Keras implementation, all the routines that we mentioned are implemented
as methods in the PolicyAgent class. The role of the PolicyAgent is to represent
the agent implementing policy gradient methods including building and training the
network models and predicting the action, log probability, entropy, and state value.

Following listing shows how one episode unfolds when the agent executes and trains
the policy and value models. The for loop is executed for 1000 episodes. An episode
terminates upon reaching 1000 steps or when the car touches the flag. The agent
executes the action predicted by the policy at every step. After each episode or step,
the training routine is called.

Listing 10.6.6, policygradient-car-10.1.1.py: The agent runs for 1000 episodes
to execute the action predicted by the policy at every step and perform training:

sampling and fitting
for episode in range(episode_count):
 state = env.reset()
 # state is car [position, speed]
 state = np.reshape(state, [1, state_dim])
 # reset all variables and memory before the start of
 # every episode
 step = 0
 total_reward = 0
 done = False
 agent.reset_memory()

Policy Gradient Methods

[334]

 while not done:
 # [min, max] action = [-1.0, 1.0]
 # for baseline, random choice of action will not move
 # the car pass the flag pole
 if args.random:
 action = env.action_space.sample()
 else:
 action = agent.act(state)
 env.render()
 # after executing the action, get s', r, done
 next_state, reward, done, _ = env.step(action)
 next_state = np.reshape(next_state, [1, state_dim])
 # save the experience unit in memory for training
 # Actor-Critic does not need this but we keep it anyway.
 item = [step, state, next_state, reward, done]
 agent.remember(item)

 if args.actor_critic and train:
 # only actor-critic performs online training
 # train at every step as it happens
 agent.train(item, gamma=0.99)
 elif not args.random and done and train:
 # for REINFORCE, REINFORCE with baseline, and A2C
 # we wait for the completion of the episode before
 # training the network(s)
 # last value as used by A2C
 v = 0 if reward > 0 else agent.value(next_state)[0]
 agent.train_by_episode(last_value=v)

 # accumulate reward
 total_reward += reward
 # next state is the new state
 state = next_state
 step += 1

Chapter 10

[335]

Performance evaluation of policy gradient
methods
The four policy gradients methods were evaluated by training the agent for 1,000
episodes. We define 1 training session as 1,000 episodes of training. The first
performance metric is measured by accumulating the number of times the car
reached the flag in 1,000 episodes. Figures 10.7.1 to 10.7.4 shows five training sessions
per method.

In this metric, A2C reached the flag with the greatest number of times followed by
REINFORCE with baseline, Actor-Critic, and REINFORCE. The use of baseline or
critic accelerates the learning. Note that these are training sessions with the agent
continuously improving its performance. There were cases in the experiments
where the agent's performance did not improve with time.

The second performance metric is based on the requirement that the
MountainCarContinuous-v0 is considered solved if the total reward per episode
is at least 90.0. From the five training sessions per method, we selected one training
session with the highest total reward for the last 100 episodes (episodes 900 to
999). Figures 10.7.5 to 10.7.8 show the results of the four policy gradient methods.
REINFORCE with baseline is the only method that was able to consistently achieve
a total reward of about 90 after 1,000 episodes of training. A2C has the second-best
performance but could not consistently reach at least 90 for the total rewards.

Figure 10.7.1: The number of times the mountain car reached the flag using REINFORCE method

Policy Gradient Methods

[336]

Figure 10.7.2: The number of times the mountain car reached the flag using REINFORCE with baseline method

Figure 10.7.3: The number of times the mountain car reached the flag using the Actor-Critic method

Chapter 10

[337]

Figure 10.7.4: The number of times the mountain car reached the flag using the A2C method

Figure 10.7.5: Total rewards received per episode using REINFORCE method

Policy Gradient Methods

[338]

Figure 10.7.6: Total rewards received per episode using REINFORCE with baseline method.

Figure 10.7.7: Total rewards received per episode using the Actor-Critic method

Chapter 10

[339]

Figure 10.7.8: The total rewards received per episode using the A2C method

In the experiments conducted, we used the same learning rate, 1e-3, for log
probability and value networks optimization. The discount factor is set to 0.99,
except for A2C which is easier to train at a 0.95 discount factor.

The reader is encouraged to run the trained network by executing:

$ python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 --actor_weights=actor_weights.h5

Following table shows other modes of running policygradient-car-10.1.1.py.
The weights file (that is, *.h5) can be replaced by your own pre-trained weights file.
Please consult the code to see the other potential options:

Purpose Run

Train REINFORCE
from scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

Train REINFORCE
with baseline from
scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -b

Train Actor-Critic
from scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -a

Train A2C from
scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -c

Policy Gradient Methods

[340]

Train REINFORCE
from previously
saved weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5 --train

Train REINFORCE
with baseline from
previously saved
weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -b --train

Train Actor-Critic
from previously
saved weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -a --train

Train A2C from
previously saved
weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -c --train

Table 10.7.1: Different options in running policygradient-car-10.1.1.py

As a final note, the implementation of the policy gradient methods in Keras has
some limitations. For example, training the actor model requires resampling the
action. The action is first sampled and applied to the environment to observe the
reward and next state. Then, another sample is taken for training the log probability
model. The second sample is not necessarily the same as the first one, but the reward
that is used for training comes from the first sampled action, which can introduce
stochastic error in the computation of gradients.

The good news is Keras is gaining a lot of support from TensorFlow in the form
of tf.keras. Transitioning from Keras to a more flexible and powerful machine
learning library, like TensorFlow, has been made a lot easier. If you started with
Keras and wanted to build low-level custom machine learning routines, the APIs
of Keras and tf.keras share strong similarities.

There is a small learning curve in using Keras in TensorFlow. Furthermore, in tf.
keras, you're able to take advantage of the new easy to use Dataset and Estimators
APIs of TensorFlow. This simplifies a lot of the code and model reuse that ends
up with a clean pipeline. With the new eager execution mode of TensorFlow, it
becomes even easier to implement and debug Python codes in tf.keras and
TensorFlow. Eager execution allows the execution of codes without building
a computational graph as we did in this book. It also allows code structures
similar to a typical Python program.

Chapter 10

[341]

Conclusion
In this chapter, we've covered the policy gradient methods. Starting with the policy
gradient theorem, we formulated four methods to train the policy network. The
four methods, REINFORCE, REINFORCE with baseline, Actor-Critic, and A2C
algorithms were discussed in detail. We explored how the four methods could be
implemented in Keras. We then validated the algorithms by examining the number
of times the agent successfully reached its goal and in terms of the total rewards
received per episode.

Similar to Deep Q-Network [2] that we discussed in the previous chapter, there
are several improvements that can be done on the fundamental policy gradient
algorithms. For example, the most prominent one is the A3C [3] which is a multi-
threaded version of A2C. This enables the agent to get exposed to different
experiences simultaneously and to optimize the policy and value networks
asynchronously. However, in the experiments conducted by OpenAI, https://
blog.openai.com/baselines-acktr-a2c/, there is no strong advantage of A3C
over A2C since the former could not take advantage of the strong GPUs available
nowadays.

Given that this is the end of the book, it's worth noting that the area of deep learning
is huge, and to cover all the advances in one book like this is impossible. What we've
done is carefully selected the advanced topics that I believe will be useful in a wide
range of applications and that you, the reader will be able to easily build on. The
implementations in Keras that have been illustrated throughout this book will allow
you to carry on and apply the techniques in your own work and research.

References
1.	 Sutton and Barto. Reinforcement Learning: An Introduction, http://

incompleteideas.net/book/bookdraft2017nov5.pdf, (2017).
2.	 Mnih, Volodymyr, and others. Human-level control through deep reinforcement

learning, Nature 518.7540 (2015): 529.
3.	 Mnih, Volodymyr, and others. Asynchronous methods for deep reinforcement

learning, International conference on machine learning, 2016.
4.	 Williams and Ronald J. Simple statistical gradient-following algorithms for

connectionist reinforcement learning, Machine learning 8.3-4 (1992): 229-256.

https://blog.openai.com/baselines-acktr-a2c/
https://blog.openai.com/baselines-acktr-a2c/
http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Deep Reinforcement Learning Hands-On

Maxim Lapan

ISBN: 978-1-78883-424-7

●● Understand the DL context of RL and implement complex DL models
●● Learn the foundation of RL: Markov decision processes
●● Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO,

DDPG, D4PG and others
●● Discover how to deal with discrete and continuous action spaces in various

environments
●● Defeat Atari arcade games using the value iteration method
●● Create your own OpenAI Gym environment to train a stock trading agent
●● Teach your agent to play Connect4 using AlphaGo Zero
●● Explore the very latest deep RL research on topics including AI-driven chatbots

https://www.packtpub.com/big-data-and-business-intelligence/deep-reinforcement-learning-hands

[344]

Other Books You May Enjoy

Deep Learning with TensorFlow

Giancarlo Zaccone, Md. Rezaul Karim

ISBN: 978-1-78883-110-9

●● Apply deep machine intelligence and GPU computing with TensorFlow
●● Access public datasets and use TensorFlow to load, process, and transform

the data
●● Discover how to use the high-level TensorFlow API to build more powerful

applications
●● Use deep learning for scalable object detection and mobile computing
●● Train machines quickly to learn from data by exploring reinforcement learning

techniques
●● Explore active areas of deep learning research and applications

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-second-edition

[345]

Other Books You May Enjoy

Leave a review - let other readers know what you
think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[347]

Index
A
accuracy 17
Actor-Critic (A2C) method

about 315
advantages 317

Adaptive Moments (Adam) 17
Artificial Intelligence (AI) 271
Asynchronous Advantage Actor-Critic

(A3C) 317
autoencoders

building, with Keras 74, 78-80, 83
decoder 72
encoder 72
principles 72-74

automatic colorization
autoencoders 89, 90, 95

Auxiliary Classifier GAN (ACGAN) 125,
147-150, 152-157, 161

B
backpropagation

reference 20
Batch Normalization (BN) 25, 105, 212
Bellman Equation 275
bootstrapping 288

C
Conditional GAN (CGAN) 114-205
Conditional loss function 184
Conditional VAE (CVAE) 254, 261, 263, 264
Conv2D -Batch Normalization (BN)-ReLU 51
convolution 26

Convolutional Neural Networks (CNN)
about 23, 25
convolution 26, 27
performance evaluation 28, 29
pooling operation 28
summary 28

Core Deep Learning Models
difference between 5
implementing 4, 5

critic 100
cross-domain transfer 203
CyCADA (Cycle-Consistent Adversarial Domain

Adaptation) 230
CycleGAN

about 203
principles 204, 205
using, in MNIST 227-234
using, in SVHN datasets 227-234

CycleGAN model
about 207-210
implementing, with Keras 211-227

D
decoder 72
Deep Learning (DL)

about 271
URL 97

Deep Q-network (DQN)
on Keras 296, 297

Deep Reinforcement Learning
(DRL) 271, 293-296

deep residual networks (ResNet) 49-58
denoising autoencoders (DAE) 84-86
densely connected convolutional networks

(DenseNet) 62-68

[348]

DenseNet 39
DenseNet-BC (Bottleneck-Compression) 65
disentangled representations 162-174
Double Q-learning (DDQN) 302
dropout 14

E
Earth-Mover Distance (EMD) 127
Entropy loss function 185
evidence lower bound (ELBO) 241
experience replay 296

F
feature maps 26
FractalNet 39
Functional API

about 40-45
conclusion 68
layer 41
model 41
reference 49
two input and one output model,

creating 43-49

G
Gated Recurrent Unit (GRU) 35
Generative Adversarial Network (GAN) 71

about 99,125, 203
distance function 128-131
implementing, in Keras 105-113
principles 100-105

gradient descent (GD) 17
Gym

URL 288

H
hyperparameter 12

I
InfoGAN

about 162-174
conclusion 200
Generator Outputs 177, 179

Instance Normalization (IN) 212

J
Jensen-Shannon (JS) 126, 128

K
Keras

about 2
Deep Q-network (DQN) 296, 297
GAN implementation 105-113
installing 3, 4
policy gradient methods 318-333
reference 4
used, for building autoencoders 74-83
used, for building model 12-14
used, for implementing CycleGAN 211-227
used, for implementing WGAN 135, 141

Keras Sequential API 2
Kullback-Leibler (KL) 126, 240

L
label flipping 230
Leaky ReLU 106
Least Squares GAN

(LSGAN) 125, 208, 142-146
logistic sigmoid 15
Long Short Term Memory (LSTM) 35

M
Markov Decision Process (MDP) 273
Mean Absolute Error (MAE) 207
Mean Squared Error (MSE) 17, 73, 208, 317
Monte Carlo policy gradient (REINFORCE)

method
about 311, 312
Actor-Critic method 315

[349]

Actor-Critic method, advantages 317
baseline method 313

multilayer perceptron (MLP)
about 6
loss function 15, 17
MNIST dataset 6, 8
MNIST digits classifier model 8-12
model summary 22
optimization 17-19
output activation 15, 17
performance evaluation 20
regularization 14
used, for building model 12-14

N
natural language processing (NLP) 31
nondeterministic environment 287

O
one-hot vector 11
OpenAI

URL 341

P
partially observable MDP (POMDP) 273
pix2pix 203
policy gradient methods

performance evaluation 335-340
with Keras 318-332

policy gradient theorem
about 308-311
URL 310

Python
Q-learning, implementing 281, 286

Q
Q-learning

examples 276-280
implementing, in Python 281, 286
on OpenAI gym 288, 289

Q value 274, 275

R
Reconstruction Loss 241
Rectified Linear Unit (ReLU) 13, 105
Recurrent Neural Networks (RNN) 31-36
Reinforcement Learning (RL)

about 271
principles 272-274

Reparameterization Trick 243
ResNet 39
ResNet v2 59-62
ResNeXt 39
Root Mean Squared Propagation

(RMSprop) 17

S
Sequential Model API 2
Stacked Generative Adversarial Network

(StackedGAN)
about 162, 179, 180, 184
conclusion 200
Conditional loss function 184
Entropy loss function 184
Generator Outputs 197, 200
implementations, in Keras 181-193

Stochastic Gradient Descent (SGD) 17
Street View House Numbers (SVHN) 204
structural similarity index (SSIM) 73

T
target (ground truth) 6
Temporal-Difference Learning

(TD-Learning) 287
TensorFlow

installing 3, 4
reference 4

Transposed CNN (deconvolution) 78

U
U-Net 212
unsupervised learning 71

[350]

V
Variational Autoencoder (VAE)

about 71, 234, 237
CNN, using 249, 254
conclusion 268
core equation 240
decoder testing 243
optimization 241
principles 238, 239
reparameterization trick 242
using, in Keras 244, 248
variational inference 239
with disentangled latent

representations 264-266
variational lower bound 241

W
Wasserstein GAN (WGAN)

about 125, 126
distance functions 126, 128
implementing, Keras used 135, 141

Wasserstein loss
usage 131-135

Y
Y-Network 43

	Title Page
	Copyright
	About the author
	Acknowledgments
	About the reviewer
	Table of Contents
	Preface
	1 Introducing Advanced Deep Learning with Keras
	2 Deep Neural Networks
	3 Autoencoders
	4 Generative Adversarial Networks (GANs)
	5 Improved GANs
	6 Disentangled Representation GANs
	7 Cross-Domain GANs
	8 Variational Autoencoders (VAEs)
	9 Deep Reinforcement Learning
	10 Policy Gradient Methods
	Other Books You May Enjoy
	Index

