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Preface
In recent years, deep learning has made unprecedented success stories in difficult 
problems in vision, speech, natural language processing and understanding, 
and all other areas with abundance of data. The interest in this field by companies, 
universities, governments, and research organizations has accelerated the advances 
in the field. This book covers select important advances in deep learning. The 
advanced theories are explained by giving a background of the principles, digging 
into the intuition behind the concepts, implementing the equations and algorithms 
using Keras, and examining the results.

Artificial Intelligence (AI), as it stands today, is still far from being a well-
understood field. Deep learning, as a sub field of AI, is in the same position. 
While it is far from being a mature field, many real-world applications such 
as vision-based detection and recognition, product recommendation, speech 
recognition and synthesis, energy conservation, drug discovery, finance, and 
marketing are already using deep learning algorithms. Many more applications 
will be discovered and built. The aim of this book is to explain advanced concepts, 
give sample implementations, and let the readers, as experts in their field, identify 
the target applications.

A field that is not completely mature is a double-edged sword. On one edge, it 
offers a lot of opportunities for discovery and exploitation. There are many unsolved 
problems in deep learning. This translates into opportunities to be the first to market 
– product development, publication, or recognition. The other edge is that it would 
be difficult to trust a not completely well-understood field in a mission-critical 
environment. We can safely say that if asked, very few machine learning engineers 
will ride an auto-pilot plane controlled by a deep learning system. There is a lot of 
work to be done to gain this level of trust. The advanced concepts that are discussed 
in this book have a high chance of playing a major role as the foundation in gaining 
this level of trust.
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Every book in deep learning will not be able to completely cover the whole 
field. This book is not an exception. Given the time and space, we could have 
touched interesting areas such as detection, segmentation and recognition, 
visual understanding, probabilistic reasoning, natural language processing and 
understanding, speech synthesis, and automated machine learning. However, 
this book believes in choosing and explaining select areas so that readers can 
take up other fields that are not covered.

As the reader is about to read the rest of this book, they need to keep in mind that 
they chose an area that is exciting and can have a huge impact on the society. We 
are fortunate to have a job that we look forward to working on as we wake up in 
the morning.

Who this book is for
The book is intended for machine learning engineers and students who would 
like to gain a better understanding of advanced topics in deep learning. Each 
discussion is supplemented with code implementation in Keras. This book is for 
readers who would like to understand how to translate theory into a working code 
implementation in Keras. Apart from understanding theories, code implementation 
is usually one of the difficult tasks in applying machine learning to real-world 
problems.

What this book covers
Chapter 1, Introducing Advanced Deep Learning with Keras, covers the key concepts 
of deep learning such as optimization, regularization, loss functions, fundamental 
layers, and networks and their implementation in Keras. This chapter also serves  
as a review of both deep learning and Keras using sequential API.

Chapter 2, Deep Neural Networks, discusses the functional API of Keras. Two 
widely-used deep network architectures, ResNet and DenseNet, are examined 
and implemented in Keras, using functional API.

Chapter 3, Autoencoders, covers a common network structure called autoencoder 
that is used to discover the latent representation of the input data. Two example 
applications of autoencoders, denoising and colorization, are discussed and 
implemented in Keras.

Chapter 4, Generative Adversarial Networks (GANs), discusses one of the recent 
significant advances in deep learning. GAN is used to generate new synthetic 
data that appear real. This chapter explains the principles of GAN. Two 
examples of GAN, DCGAN and CGAN, are examined and implemented in Keras.
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Chapter 5, Improved GANs, covers algorithms that improve the basic GAN. The 
algorithms address the difficulty in training GANs and improve the perceptual 
quality of synthetic data. WGAN, LSGAN, and ACGAN are discussed and 
implemented in Keras.

Chapter 6, Disentangled Representation GANs, discusses how to control the attributes 
of the synthetic data generated by GANs. The attributes can be controlled if the latent 
representations are disentangled. Two techniques in disentangling representations, 
InfoGAN and StackedGAN, are covered and implemented in Keras.

Chapter 7, Cross-Domain GANs, covers a practical application of GANs, translating 
images from one domain to another or commonly known as cross-domain transfer. 
CycleGAN, a widely used cross-domain GAN, is discussed and implemented in 
Keras. This chapter also demonstrates CycleGAN performing colorization and 
style transfer.

Chapter 8, Variational Autoencoders (VAEs), discusses another recent significant 
advance in deep learning. Similar to GAN, VAE is a generative model that is 
used to produce synthetic data. Unlike GAN, VAE focuses on decodable continuous 
latent space that is suitable for variational inference. VAE and its variations, 
CVAE and β -VAE, are covered and implemented in Keras.

Chapter 9, Deep Reinforcement Learning, explains the principles of reinforcement 
learning and Q-Learning. Two techniques in implementing Q-Learning for 
discrete action spaces are presented, Q Table update and Deep Q Network (DQN). 
Implementation of Q-Learning using Python and DQN in Keras are demonstrated 
in OpenAI gym environments.

Chapter 10, Policy Gradient Methods, explains how to use neural networks to learn the 
policy for decision making in reinforcement learning. Four methods are covered and 
implemented in Keras and OpenAI gym environment, REINFORCE, REINFORCE 
with Baseline, Actor-Critic, and Advantage Actor-Critic. The example presented in 
this chapter demonstrates policy gradient methods on a continuous action space.

To get the most out of this book
•	 Deep learning and Python: The reader should have a fundamental 

knowledge of deep learning and its implementation in Python. While 
previous experience in using Keras to implement deep learning algorithms 
is important, it is not required. Chapter 1, Introducing Advanced Deep Learning 
with Keras offers a review of deep learning concepts and their implementation 
in Keras.
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•	 Math: The discussions in this book assume that the reader is familiar 
with calculus, linear algebra, statistics, and probability at the college level.

•	 GPU: Majority of the Keras implementations in this book require GPU. 
Without GPU, it is not practical to execute many of the code examples 
because of the time involved (many hours to days). The examples in this 
book use reasonable data size as much as possible in order to minimize 
the use of high-performance computers. The reader is expected to have 
access to at least NVIDIA GTX 1060.

•	 Editor: The code examples in this book were edited using vim in Ubuntu 
Linux 16.04 LTS, Ubuntu Linux 17.04, and macOS High Sierra. Any Python-
aware text editor is acceptable.

•	 Tensorflow: Keras requires a backend. The code examples in this book 
were written in Keras with TensorFlow backend. Please ensure that the 
GPU driver and tensorflow are both installed properly.

•	 GitHub: We learn by example and experimentation. Please git pull 
or fork the code bundle for the book from its GitHub repository. After 
getting the code, examine it. Run it. Change it. Run it again. Do all creative 
experiments by tweaking the code examples. It is the only way to appreciate 
all the theories explained in the chapters. Giving a star on the book GitHub 
repository is also highly appreciated.

Download the example code files
The code bundle for the book is hosted on GitHub at 

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

We also have other code bundles from our rich catalog of books and videos available 
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781788629416_ColorImages.pdf.

Conventions used
The code examples in this book are in Python. More specifically, python3. The 
color scheme is based on vim syntax highlighting. Consider the following example:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788629416_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629416_ColorImages.pdf
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def encoder_layer(inputs,
                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU

    """

    conv = Conv2D(filters=filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization()(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    return x

Whenever possible, docstring is included. At the very least, text comment is used 
to minimize space usage.

Any command-line code execution is written as follows:

$ python3 dcgan-mnist-4.2.1.py

The example code file naming is: algorithm-dataset-chapter.section.number.
py. The command-line example is DCGAN on MNIST dataset in Chapter 4, second 
section and first listing. In some cases, the explicit command line to execute is not 
written but it is assumed to be:

$ python3 name-of-the-file-in-listing

The file name of the code example is included in the Listing caption.
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Introducing Advanced Deep  
Learning with Keras

In this first chapter, we will introduce the three deep learning artificial neural 
networks that we will be using throughout the book. These deep learning models 
are MLPs, CNNs, and RNNs, which are the building blocks to the advanced deep 
learning topics covered in this book, such as Autoencoders and GANs.

Together, we'll implement these deep learning models using the Keras library in 
this chapter. We'll start by looking at why Keras is an excellent choice as a tool for 
us. Next, we'll dig into the installation and implementation details within the three 
deep learning models.

This chapter will:

•	 Establish why the Keras library is a great choice to use for advanced 
deep learning

•	 Introduce MLPs, CNNs, and RNNs – the core building blocks of most 
advanced deep learning models, which we'll be using throughout this book

•	 Provide examples of how to implement MLPs, CNNs, and RNNs using Keras 
and TensorFlow

•	 Along the way, start to introduce important deep learning concepts, 
including optimization, regularization, and loss function

By the end of this chapter, we'll have the fundamental deep learning models 
implemented using Keras. In the next chapter, we'll get into the advanced 
deep learning topics that build on these foundations, such as Deep Networks, 
Autoencoders, and GANs.
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Why is Keras the perfect deep 
learning library?
Keras [Chollet, François. "Keras (2015)." (2017)] is a popular deep learning library with 
over 250,000 developers at the time of writing, a number that is more than doubling 
every year. Over 600 contributors actively maintain it. Some of the examples we'll 
use in this book have been contributed to the official Keras GitHub repository. 
Google's TensorFlow, a popular open source deep learning library, uses Keras as 
a high-level API to its library. In the industry, Keras is used by major technology 
companies like Google, Netflix, Uber, and NVIDIA. In this chapter, we introduce 
how to use Keras Sequential API.

We have chosen Keras as our tool of choice to work within this book because Keras 
is a library dedicated to accelerating the implementation of deep learning models. 
This makes Keras ideal for when we want to be practical and hands-on, such as 
when we're exploring the advanced deep learning concepts in this book. Because 
Keras is intertwined with deep learning, it is essential to learn the key concepts 
of deep learning before someone can maximize the use of Keras libraries.

All examples in this book can be found on GitHub at the following link: 
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras.

Keras is a deep learning library that enables us to build and train models efficiently. 
In the library, layers are connected to one another like pieces of Lego, resulting 
in a model that is clean and easy to understand. Model training is straightforward 
requiring only data, a number of epochs of training, and metrics to monitor. The 
end result is that most deep learning models can be implemented with a significantly 
smaller number of lines of code. By using Keras, we'll gain productivity by saving 
time in code implementation which can instead be spent on more critical tasks 
such as formulating better deep learning algorithms. We're combining Keras with 
deep learning, as it offers increased efficiency when introduced with the three deep 
learning networks that we will introduce in the following sections of this chapter.

Likewise, Keras is ideal for the rapid implementation of deep learning models, like the 
ones that we will be using in this book. Typical models can be built in few lines of 
code using the Sequential Model API. However, do not be misled by its simplicity. 
Keras can also build more advanced and complex models using its API and Model 
and Layer classes which can be customized to satisfy unique requirements. Functional 
API supports building graph-like models, layers reuse, and models that are behaving 
like Python functions. Meanwhile, Model and Layer classes provide a framework for 
implementing uncommon or experimental deep learning models and layers.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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Installing Keras and TensorFlow
Keras is not an independent deep learning library. As shown in Figure 1.1.1, it is 
built on top of another deep learning library or backend. This could be Google's 
TensorFlow, MILA's Theano or Microsoft's CNTK. Support for Apache's MXNet is 
nearly completed. We'll be testing examples in this book on a TensorFlow backend 
using Python 3. This due to the popularity of TensorFlow, which makes it a common 
backend.

We can easily switch from one back-end to another by editing the Keras 
configuration file .keras/keras.json in Linux or macOS. Due to the differences 
in the way low-level algorithms are implemented, networks can often have different 
speeds on different backends.

On hardware, Keras runs on a CPU, GPU, and Google's TPU. In this book, 
we'll be testing on a CPU and NVIDIA GPUs (Specifically, the GTX 1060 and 
GTX 1080Ti models).

Figure 1.1.1: Keras is a high-level library that sits on top of other deep learning models.  
Keras is supported on CPU, GPU, and TPU.

Before proceeding with the rest of the book, we need to ensure that Keras 
and TensorFlow are correctly installed. There are multiple ways to perform 
the installation; one example is installing using pip3:

$ sudo pip3 install tensorflow

If we have a supported NVIDIA GPU, with properly installed drivers, and 
both NVIDIA's CUDA Toolkit and cuDNN Deep Neural Network library, 
it is recommended that we install the GPU-enabled version since it can accelerate 
both training and prediction:

$ sudo pip3 install tensorflow-gpu
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The next step for us is to then install Keras:

$ sudo pip3 install keras

The examples presented in this book will require additional packages, such as 
pydot, pydot_ng, vizgraph, python3-tk and matplotlib. We'll need to install these 
packages before proceeding beyond this chapter.

The following should not generate any error if both TensorFlow and Keras are 
installed along with their dependencies:

$ python3

>>> import tensorflow as tf

>>> message = tf.constant('Hello world!')

>>> session = tf.Session()

>>> session.run(message)

b'Hello world!'

>>> import keras.backend as K

Using TensorFlow backend.

>>> print(K.epsilon())

1e-07

The warning message about SSE4.2 AVX AVX2 FMA, which is similar to the one 
below can be safely ignored. To remove the warning message, you'll need to 
recompile and install the TensorFlow source code from https://github.com/
tensorflow/tensorflow.

tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports 
instructions that this TensorFlow binary was not compiled to use: 
SSE4.2 AVX AVX2 FMA

This book does not cover the complete Keras API. We'll only be covering the 
materials needed to explain the advanced deep learning topics in this book. For 
further information, we can consult the official Keras documentation, which can 
be found at https://keras.io.

Implementing the core deep learning 
models - MLPs, CNNs, and RNNs
We've already mentioned that we'll be using three advanced deep learning models, 
they are:

•	 MLPs: Multilayer perceptrons

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://keras.io
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•	 RNNs: Recurrent neural networks
•	 CNNs: Convolutional neural networks

These are the three networks that we will be using throughout this book. Despite 
the three networks being separate, you'll find that they are often combined together 
in order to take advantage of the strength of each model.

In the following sections of this chapter, we'll discuss these building blocks one by 
one in more detail. In the following sections, MLPs are covered together with other 
important topics such as loss function, optimizer, and regularizer. Following on 
afterward, we'll cover both CNNs and RNNs.

The difference between MLPs, CNNs, 
and RNNs
Multilayer perceptrons or MLPs are a fully-connected network. You'll often find 
them referred to as either deep feedforward networks or feedforward neural 
networks in some literature. Understanding these networks in terms of known 
target applications will help us get insights about the underlying reasons for the 
design of the advanced deep learning models. MLPs are common in simple logistic 
and linear regression problems. However, MLPs are not optimal for processing 
sequential and multi-dimensional data patterns. By design, MLPs struggle to 
remember patterns in sequential data and requires a substantial number of 
parameters to process multi-dimensional data.

For sequential data input, RNNs are popular because the internal design allows 
the network to discover dependency in the history of data that is useful for 
prediction. For multi-dimensional data like images and videos, a CNN excels 
in extracting feature maps for classification, segmentation, generation, and other 
purposes. In some cases, a CNN in the form of a 1D convolution is also used for 
networks with sequential input data. However, in most deep learning models, 
MLPs, RNNs, and CNNs are combined to make the most out of each network.

MLPs, RNNs, and CNNs do not complete the whole picture of deep networks. 
There is a need to identify an objective or loss function, an optimizer, and a regularizer. 
The goal is to reduce the loss function value during training since it is a good guide 
that a model is learning. To minimize this value, the model employs an optimizer. 
This is an algorithm that determines how weights and biases should be adjusted 
at each training step. A trained model must work not only on the training data but 
also on a test or even on unforeseen input data. The role of the regularizer is to 
ensure that the trained model generalizes to new data.
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Multilayer perceptrons (MLPs)
The first of the three networks we will be looking at is known as a multilayer 
perceptrons or (MLPs). Let's suppose that the objective is to create a neural network 
for identifying numbers based on handwritten digits. For example, when the input 
to the network is an image of a handwritten number 8, the corresponding prediction 
must also be the digit 8. This is a classic job of classifier networks that can be trained 
using logistic regression. To both train and validate a classifier network, there must 
be a sufficiently large dataset of handwritten digits. The Modified National Institute 
of Standards and Technology dataset or MNIST [1] for short, is often considered 
as the Hello World! of deep learning and is a suitable dataset for handwritten digit 
classification.

Before we discuss the multilayer perceptron model, it's essential that we understand 
the MNIST dataset. A large number of the examples in this book use the MNIST 
dataset. MNIST is used to explain and validate deep learning theories because 
the 70,000 samples it contains are small, yet sufficiently rich in information:

Figure 1.3.1: Example images from the MNIST dataset. Each image is 28 × 28-pixel grayscale.

MNIST dataset
MNIST is a collection of handwritten digits ranging from the number 0 to 9. It 
has a training set of 60,000 images, and 10,000 test images that are classified into 
corresponding categories or labels. In some literature, the term target or ground 
truth is also used to refer to the label.
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In the preceding figure sample images of the MNIST digits, each being sized at 
28 X 28-pixel grayscale, can be seen. To use the MNIST dataset in Keras, an API is 
provided to download and extract images and labels automatically. Listing 1.3.1 
demonstrates how to load the MNIST dataset in just one line, allowing us to both 
count the train and test labels and then plot random digit images.

Listing 1.3.1, mnist-sampler-1.3.1.py. Keras code showing how to access MNIST 
dataset, plot 25 random samples, and count the number of labels for train and test 
datasets:

import numpy as np
from keras.datasets import mnist
import matplotlib.pyplot as plt

# load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# count the number of unique train labels
unique, counts = np.unique(y_train, return_counts=True)
print("Train labels: ", dict(zip(unique, counts)))

# count the number of unique test labels
unique, counts = np.unique(y_test, return_counts=True)
print("Test labels: ", dict(zip(unique, counts)))

# sample 25 mnist digits from train dataset
indexes = np.random.randint(0, x_train.shape[0], size=25)
images = x_train[indexes]
labels = y_train[indexes]

# plot the 25 mnist digits
plt.figure(figsize=(5,5))
for i in range(len(indexes)):
    plt.subplot(5, 5, i + 1)
    image = images[i]
    plt.imshow(image, cmap='gray')
    plt.axis('off')

plt.show()
plt.savefig("mnist-samples.png")
plt.close('all')

The mnist.load_data() method is convenient since there is no need to load all 
70,000 images and labels individually and store them in arrays. Executing python3 
mnist-sampler-1.3.1.py on command line prints the distribution of labels in the 
train and test datasets:
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Train labels:  {0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6: 
5918, 7: 6265, 8: 5851, 9: 5949}

Test labels:  {0: 980, 1: 1135, 2: 1032, 3: 1010, 4: 982, 5: 892, 6: 958, 
7: 1028, 8: 974, 9: 1009}

Afterward, the code will plot 25 random digits as shown in the preceding figure, 
Figure 1.3.1.

Before discussing the multilayer perceptron classifier model, it is essential to keep in 
mind that while MNIST data are 2D tensors, they should be reshaped accordingly 
depending on the type of input layer. The following figure shows how a 3 × 3 
grayscale image is reshaped for MLPs, CNNs, and RNNs input layers:

Figure 1.3.2: An input image similar to the MNIST data is reshaped depending on the type of input layer.  
For simplicity, reshaping of a 3 × 3 grayscale image is shown.

MNIST digits classifier model
The proposed MLP model shown in Figure 1.3.3 can be used for MNIST digit 
classification. When the units or perceptrons are exposed, the MLP model is a fully 
connected network as shown in Figure 1.3.4. It will also be shown how the output of 
the perceptron is computed from inputs as a function of weights, wi and bias, bn for 
the nth unit. The corresponding Keras implementation is illustrated in Listing 1.3.2.
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Figure 1.3.3: MLP MNIST digit classifier model

Figure 1.3.4: The MLP MNIST digit classifier in Figure 1.3.3 is made up of fully connected layers. For simplicity, 
the activation and dropout are not shown. One unit or perceptron is also shown.
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Listing 1.3.2, mlp-mnist-1.3.2.py shows the Keras implementation of the MNIST 
digit classifier model using MLP:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

# network parameters
batch_size = 128
hidden_units = 256
dropout = 0.45

# model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
# this is the output for one-hot vector
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model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of adam optimizer
# accuracy is a good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

# validate the model on test dataset to determine generalization
loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Before discussing the model implementation, the data must be in the correct shape 
and format. After loading the MNIST dataset, the number of labels is computed as:

# compute the number of labels
num_labels = len(np.unique(y_train))

Hard coding num_labels = 10 is also an option. But, it's always a good practice to 
let the computer do its job. The code assumes that y_train has labels 0 to 9.

At this point, the labels are in digits format, 0 to 9. This sparse scalar representation 
of labels is not suitable for the neural network prediction layer that outputs 
probabilities per class. A more suitable format is called a one-hot vector, a 10-dim 
vector with all elements 0, except for the index of the digit class. For example, if the 
label is 2, the equivalent one-hot vector is [0,0,1,0,0,0,0,0,0,0]. The first label 
has index 0.

The following lines convert each label into a one-hot vector:

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

In deep learning, data is stored in tensors. The term tensor applies to a scalar (0D 
tensor), vector (1D tensor), matrix (2D tensor), and a multi-dimensional tensor. 
From this point, the term tensor is used unless scalar, vector, or matrix makes the 
explanation clearer.
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The rest computes the image dimensions, input_size of the first Dense layer and 
scales each pixel value from 0 to 255 to range from 0.0 to 1.0. Although raw pixel 
values can be used directly, it is better to normalize the input data as to avoid large 
gradient values that could make training difficult. The output of the network is also 
normalized. After training, there is an option to put everything back to the integer 
pixel values by multiplying the output tensor by 255.

The proposed model is based on MLP layers. Therefore, the input is expected to 
be a 1D tensor. As such, x_train and x_test are reshaped to [60000, 28 * 28] and 
[10000, 28 * 28], respectively.

# image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

Building a model using MLPs and Keras
After data preparation, building the model is next. The proposed model is made of 
three MLP layers. In Keras, an MLP layer is referred to as Dense, which stands for 
the densely connected layer. Both the first and second MLP layers are identical in 
nature with 256 units each, followed by relu activation and dropout. 256 units are 
chosen since 128, 512 and 1,024 units have lower performance metrics. At 128 units, 
the network converges quickly, but has a lower test accuracy. The added number 
units for 512 or 1,024 does not increase the test accuracy significantly.

The number of units is a hyperparameter. It controls the capacity of the network. 
The capacity is a measure of the complexity of the function that the network can 
approximate. For example, for polynomials, the degree is the hyperparameter.  
As the degree increases, the capacity of the function also increases.

As shown in the following model, the classifier model is implemented using 
a sequential model API of Keras. This is sufficient if the model requires one input 
and one output processed by a sequence of layers. For simplicity, we'll use this in 
the meantime, however, in Chapter 2, Deep Neural Networks, the Functional API of 
Keras will be introduced to implement advanced deep learning models.

# model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
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model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
# this is the output for one-hot vector
model.add(Activation('softmax'))

Since a Dense layer is a linear operation, a sequence of Dense layers can only 
approximate a linear function. The problem is that the MNIST digit classification is 
inherently a non-linear process. Inserting a relu activation between Dense layers will 
enable MLPs to model non-linear mappings. relu or Rectified Linear Unit (ReLU) 
is a simple non-linear function. It's very much like a filter that allows positive inputs 
to pass through unchanged while clamping everything else to zero. Mathematically, 
relu is expressed in the following equation and plotted in Figure 1.3.5:

relu(x) = max(0,x)

Figure 1.3.5: Plot of ReLU function. The ReLU function introduces non-linearity in neural networks.
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There are other non-linear functions that can be used such as elu, selu, softplus, 
sigmoid, and tanh. However, relu is the most commonly used in the industry and 
is computationally efficient due to its simplicity. The sigmoid and tanh are used 
as activation functions in the output layer and described later. Table 1.3.1 shows 
the equation for each of these activation functions:

relu relu(x) = max(0,x) 1.3.1
softplus softplus(x) = log(1 + ex) 1.3.2
elu

( ) ( )
0

,
1x

x if x
elu x a

a e otherwise

≥=  −
where 0a ≥  and is a tunable hyperparameter

1.3.3

selu selu(x) = k × elu(x,a)

where k = 1.0507009873554804934193349852946 and  
a = 1.6732632423543772848170429916717

1.3.4

Table 1.3.1: Definition of common non-linear activation functions

Regularization
A neural network has the tendency to memorize its training data especially 
if it contains more than enough capacity. In such a case, the network fails 
catastrophically when subjected to the test data. This is the classic case of the 
network failing to generalize. To avoid this tendency, the model uses a regularizing 
layer or function. A common regularizing layer is referred to as a dropout.

The idea of dropout is simple. Given a dropout rate (here, it is set to dropout=0.45), 
the Dropout layer randomly removes that fraction of units from participating in 
the next layer. For example, if the first layer has 256 units, after dropout=0.45 is 
applied, only (1 - 0.45) * 256 units = 140 units from layer 1 participate in layer 2. 
The Dropout layer makes neural networks robust to unforeseen input data because 
the network is trained to predict correctly, even if some units are missing. It's worth 
noting that dropout is not used in the output layer and it is only active during 
training. Moreover, dropout is not present during prediction.

There are regularizers that can be used other than dropouts like l1 or l2. In Keras, 
the bias, weight and activation output can be regularized per layer. l1 and l2 favor 
smaller parameter values by adding a penalty function. Both l1 and l2 enforce 
the penalty using a fraction of the sum of absolute (l1) or square (l2) of parameter 
values. In other words, the penalty function forces the optimizer to find parameter 
values that are small. Neural networks with small parameter values are more 
insensitive to the presence of noise from within the input data.
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As an example, l2 weight regularizer with fraction=0.001 can be implemented as:

from keras.regularizers import l2
model.add(Dense(hidden_units,
          kernel_regularizer=l2(0.001),
          input_dim=input_size))

No additional layer is added if l1 or l2 regularization is used. The regularization 
is imposed in the Dense layer internally. For the proposed model, dropout still has 
a better performance than l2.

Output activation and loss function
The output layer has 10 units followed by softmax activation. The 10 units 
correspond to the 10 possible labels, classes or categories. The softmax activation 
can be expressed mathematically as shown in the following equation:

( ) 1

0

i

j

x

i N x
j

esoftmax x
e−

=

=
∑

          (Equation 1.3.5)

The equation is applied to all N = 10 outputs, xi for i = 0, 1 … 9 for the final prediction. 
The idea of softmax is surprisingly simple. It squashes the outputs into probabilities 
by normalizing the prediction. Here, each predicted output is a probability that the 
index is the correct label of the given input image. The sum of all the probabilities for 
all outputs is 1.0. For example, when the softmax layer generates a prediction, it will 
be a 10-dim 1D tensor that may look like the following output:

[  3.57351579e-11   7.08998016e-08   2.30154569e-07   6.35787558e-07

   5.57471187e-11   4.15353840e-09   3.55973775e-16   9.99995947e-01

   1.29531730e-09   3.06023480e-06]

The prediction output tensor suggests that the input image is going to be 7 given 
that its index has the highest probability. The numpy.argmax() method can be used 
to determine the index of the element with the highest value.

There are other choices of output activation layer, like linear, sigmoid, and tanh. The 
linear activation is an identity function. It copies its input to its output. The sigmoid 
function is more specifically known as a logistic sigmoid. This will be used if the 
elements of the prediction tensor should be mapped between 0.0 and 1.0 independently. 
The summation of all elements of the predicted tensor is not constrained to 1.0 unlike in 
softmax. For example, sigmoid is used as the last layer in sentiment prediction (0.0 is 
bad to 1.0, which is good) or in image generation (0.0 is 0 to 1.0 is 255-pixel values).
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The tanh function maps its input in the range -1.0 to 1.0. This is important if 
the output can swing in both positive and negative values. The tanh function is 
more popularly used in the internal layer of recurrent neural networks but has 
also been used as output layer activation. If tanh is used to replace sigmoid in the 
output activation, the data used must be scaled appropriately. For example, instead 
of scaling each grayscale pixel in the range [0.0  1.0] using 

255
xx = , it is assigned 

in the range [-1.0  1.0] by 127.5
127.5
xx −

= .

The following graph shows the sigmoid and tanh functions. Mathematically, 
sigmoid can be expressed in equation as follows:

( ) ( ) 1
1 xsigmoid x x
e

σ −= =
+

          (Equation 1.3.6)

Figure 1.3.6: Plots of sigmoid and tanh
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How far the predicted tensor is from the one-hot ground truth vector is called loss. 
One type of loss function is mean_squared_error (mse), or the average of the 
squares of the differences between target and prediction. In the current example, we 
are using categorical_crossentropy. It's the negative of the sum of the product 
of the target and the logarithm of the prediction. There are other loss functions that 
are available in Keras, such as mean_absolute_error, and binary_crossentropy. 
The choice of the loss function is not arbitrary but should be a criterion that the 
model is learning. For classification by category, categorical_crossentropy 
or mean_squared_error is a good choice after the softmax activation layer. The 
binary_crossentropy loss function is normally used after the sigmoid activation 
layer while mean_squared_error is an option for tanh output.

Optimization
With optimization, the objective is to minimize the loss function. The idea is that 
if the loss is reduced to an acceptable level, the model has indirectly learned the 
function mapping input to output. Performance metrics are used to determine if 
a model has learned the underlying data distribution. The default metric in Keras 
is loss. During training, validation, and testing, other metrics such as accuracy 
can also be included. Accuracy is the percent, or fraction, of correct predictions 
based on ground truth. In deep learning, there are many other performance 
metrics. However, it depends on the target application of the model. In literature, 
performance metrics of the trained model on the test dataset is reported for 
comparison to other deep learning models.

In Keras, there are several choices for optimizers. The most commonly used 
optimizers are; Stochastic Gradient Descent (SGD), Adaptive Moments (Adam), 
and Root Mean Squared Propagation (RMSprop). Each optimizer features tunable 
parameters like learning rate, momentum, and decay. Adam and RMSprop are 
variations of SGD with adaptive learning rates. In the proposed classifier network, 
Adam is used since it has the highest test accuracy.

SGD is considered the most fundamental optimizer. It's a simpler version of the 
gradient descent in calculus. In gradient descent (GD), tracing the curve of a 
function downhill finds the minimum value, much like walking downhill in 
a valley or opposite the gradient until the bottom is reached.

The GD algorithm is illustrated in Figure 1.3.7. Let's suppose x is the parameter 
(for example, weight) being tuned to find the minimum value of y (for example, loss 
function). Starting at an arbitrary point of x = -0.5 with the gradient being 2.0dy

dx
= − . 

The GD algorithm imposes that x is then updated to ( )0.5 2.0x ∈= − − − .  
The new value of x is equal to the old value, plus the opposite of the gradient scaled 
by ∈. The small number ∈  refers to the learning rate. If ∈= 0.01, then the new value 
of x = -0.48.
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GD is performed iteratively. At each step, y will get closer to its minimum value. 

At x = 0.5 0.0dy
dx

= , the GD has found the absolute minimum value of y = -1.25. 
The gradient recommends no further change in x.

The choice of learning rate is crucial. A large value of ∈  may not find the minimum 
value since the search will just swing back and forth around the minimum value. 
On the other hand, too small value of ∈  may take a significant number of iterations 
before the minimum is found. In the case of multiple minima, the search might get 
stuck in a local minimum.

Figure 1.3.7: Gradient descent is similar to walking downhill on the function curve until  
the lowest point is reached. In this plot, the global minimum is at x = 0.5.

An example of multiple minima can be seen in Figure 1.3.8. If for some reason the 
search started at the left side of the plot and the learning rate is very small, there 
is a high probability that GD will find x = -1.51 as the minimum value of y. GD 
will not find the global minimum at x = 1.66. A sufficiently valued learning rate 
will enable the gradient descent to overcome the hill at x = 0.0. In deep learning 
practice, it is normally recommended to start at a bigger learning rate (for example. 
0.1 to 0.001) and gradually decrease as the loss gets closer to the minimum.
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Figure 1.3.8: Plot of a function with 2 minima, x = -1.51 and x = 1.66.  
Also shown is the derivative of the function.

Gradient descent is not typically used in deep neural networks since you'll often 
come upon millions of parameters that need to be trained. It is computationally 
inefficient to perform a full gradient descent. Instead, SGD is used. In SGD, a mini 
batch of samples is chosen to compute an approximate value of the descent. The 
parameters (for example, weights and biases) are adjusted by the following equation:

∈← − gθ θ           (Equation 1.3.7)

In this equation, θ  and 
1= L
m θ∇ ∑g  are the parameters and gradients tensor of the loss 

function respectively. The g is computed from partial derivatives of the loss function. 
The mini-batch size is recommended to be a power of 2 for GPU optimization 
purposes. In the proposed network, batch_size=128.

Equation 1.3.7 computes the last layer parameter updates. So, how do we adjust the 
parameters of the preceding layers? For this case, the chain rule of differentiation is 
applied to propagate the derivatives to the lower layers and compute the gradients 
accordingly. This algorithm is known as backpropagation in deep learning. The 
details of backpropagation are beyond the scope of this book. However, a good 
online reference can be found at http://neuralnetworksanddeeplearning.com.

http://neuralnetworksanddeeplearning.com
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Since optimization is based on differentiation, it follows that an important criterion 
of the loss function is that it must be smooth or differentiable. This is an important 
constraint to keep in mind when introducing a new loss function.

Given the training dataset, the choice of the loss function, the optimizer, and the 
regularizer, the model can now be trained by calling the fit() function:

# loss function for one-hot vector
# use of adam optimizer
# accuracy is a good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

This is another helpful feature of Keras. By just supplying both the x and y data, 
the number of epochs to train, and the batch size, fit() does the rest. In other deep 
learning frameworks, this translates to multiple tasks such as preparing the input 
and output data in the proper format, loading, monitoring, and so on. While all of 
these must be done inside a for loop! In Keras, everything is done in just one line.

In the fit() function, an epoch is the complete sampling of the entire training data. 
The batch_size parameter is the sample size of the number of inputs to process at 
each training step. To complete one epoch, fit() requires the size of train dataset 
divided by batch size, plus 1 to compensate for any fractional part.

Performance evaluation
At this point, the model for the MNIST digit classifier is now complete. Performance 
evaluation will be the next crucial step to determine if the proposed model has come 
up with a satisfactory solution. Training the model for 20 epochs will be sufficient to 
obtain comparable performance metrics. 

The following table, Table 1.3.2, shows the different network configurations and 
corresponding performance measures. Under Layers, the number of units is shown 
for layers 1 to 3. For each optimizer, the default parameters in Keras are used. The 
effects of varying the regularizer, optimizer and number of units per layer can be 
observed. Another important observation in Table 1.3.2 is that bigger networks do 
not necessarily translate to better performance.

Increasing the depth of this network shows no added benefits in terms of accuracy for 
both training and testing datasets. On the other hand, a smaller number of units, like 
128, could also lower both the test and train accuracy. The best train accuracy at 99.93% 
is obtained when the regularizer is removed, and 256 units per layer are used. The test 
accuracy, however, is much lower at 98.0%, as a result of the network overfitting.
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The highest test accuracy is with the Adam optimizer and Dropout(0.45) at 98.5%. 
Technically, there is still some degree of overfitting given that its training accuracy 
is 99.39%. Both the train and test accuracy are the same at 98.2% for 256-512-256, 
Dropout(0.45) and SGD. Removing both the Regularizer and ReLU layers results 
in it having the worst performance. Generally, we'll find that the Dropout layer 
has better performance than l2.

Following table demonstrates a typical deep neural network performance 
during tuning. The example indicates that there is a need to improve the network 
architecture. In the following section, another model using CNNs shows a significant 
improvement in test accuracy:

Layers Regularizer Optimizer ReLU Train 
Accuracy, %

Test 
Accuracy, %

256-256-256 None SGD None 93.65 92.5
256-256-256 L2(0.001) SGD Yes 99.35 98.0
256-256-256 L2(0.01) SGD Yes 96.90 96.7
256-256-256 None SGD Yes 99.93 98.0
256-256-256 Dropout(0.4) SGD Yes 98.23 98.1
256-256-256 Dropout(0.45) SGD Yes 98.07 98.1
256-256-256 Dropout(0.5) SGD Yes 97.68 98.1
256-256-256 Dropout(0.6) SGD Yes 97.11 97.9
256-512-256 Dropout(0.45) SGD Yes 98.21 98.2
512-512-512 Dropout(0.2) SGD Yes 99.45 98.3
512-512-512 Dropout(0.4) SGD Yes 98.95 98.3
512-1024-512 Dropout(0.45) SGD Yes 98.90 98.2
1024-1024-1024 Dropout(0.4) SGD Yes 99.37 98.3
256-256-256 Dropout(0.6) Adam Yes 98.64 98.2
256-256-256 Dropout(0.55) Adam Yes 99.02 98.3
256-256-256 Dropout(0.45) Adam Yes 99.39 98.5
256-256-256 Dropout(0.45) RMSprop Yes 98.75 98.1
128-128-128 Dropout(0.45) Adam Yes 98.70 97.7

Table 1.3.2: Different MLP network configurations and performance measures

Model summary
Using the Keras library provides us with a quick mechanism to double check the 
model description by calling:

model.summary()
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Listing 1.3.2 shows the model summary of the proposed network. It requires 
a total of 269,322 parameters. This is substantial considering that we have a simple 
task of classifying MNIST digits. MLPs are not parameter efficient. The number of 
parameters can be computed from Figure 1.3.4 by focusing on how the output of the 
perceptron is computed. From input to Dense layer: 784 × 256 + 256 = 200,960. From 
first Dense to second Dense: 256 × 256 + 256 = 65,792. From second Dense to the 
output layer: 10 × 256 + 10 = 2,570. The total is 269,322.

Listing 1.3.2 shows a summary of an MLP MNIST digit classifier model:

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

dense_1 (Dense)              (None, 256)               200960    

_________________________________________________________________

activation_1 (Activation)    (None, 256)               0         

_________________________________________________________________

dropout_1 (Dropout)          (None, 256)               0         

_________________________________________________________________

dense_2 (Dense)              (None, 256)               65792     

_________________________________________________________________

activation_2 (Activation)    (None, 256)               0         

_________________________________________________________________

dropout_2 (Dropout)          (None, 256)               0         

_________________________________________________________________

dense_3 (Dense)              (None, 10)                2570      

_________________________________________________________________

activation_3 (Activation)    (None, 10)                0         

=================================================================

Total params: 269,322

Trainable params: 269,322

Non-trainable params: 0

Another way of verifying the network is by calling:

plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

Figure 1.3.9 shows the plot. You'll find that this is similar to the results of summary() 
but graphically shows the interconnection and I/O of each layer.
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Figure 1.3.9: The graphical description of the MLP MNIST digit classifier

Convolutional neural networks (CNNs)
We're now going to move onto the second artificial neural network, Convolutional 
Neural Networks (CNNs). In this section, we're going solve the same MNIST digit 
classification problem, instead this time using CNNs.
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Figure 1.4.1 shows the CNN model that we'll use for the MNIST digit classification, 
while its implementation is illustrated in Listing 1.4.1. Some changes in the previous 
model will be needed to implement the CNN model. Instead of having input vector, 
the input tensor now has new dimensions (height, width, channels) or (image_size, 
image_size, 1) = (28, 28, 1) for the grayscale MNIST images. Resizing the train and 
test images will be needed to conform to this input shape requirement.

Figure 1.4.1: CNN model for MNIST digit classification

Listing 1.4.1, cnn-mnist-1.4.1.py shows the Keras code for the MNIST digit 
classification using CNN:

import numpy as np
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# input image dimensions
image_size = x_train.shape[1]
# resize and normalize
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
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# image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2

# model is a stack of CNN-ReLU-MaxPooling
model = Sequential()
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu',
                 input_shape=input_shape))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu'))
model.add(Flatten())
# dropout added as regularizer
model.add(Dropout(dropout))
# output layer is 10-dim one-hot vector
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='cnn-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of adam optimizer
# accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=10, batch_size=batch_size)

loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

The major change here is the use of Conv2D layers. The relu activation function 
is already an argument of Conv2D. The relu function can be brought out as an 
Activation layer when the batch normalization layer is included in the model. 
Batch normalization is used in deep CNNs so that large learning rates can be 
used without causing instability during training.
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Convolution
If in the MLP model the number of units characterizes the Dense layers, the kernel 
characterizes the CNN operations. As shown in Figure 1.4.2, the kernel can be 
visualized as a rectangular patch or window that slides through the whole image 
from left to right, and top to bottom. This operation is called convolution. It 
transforms the input image into a feature maps, which is a representation of what 
the kernel has learned from the input image. The feature maps are then transformed 
into another feature maps in the succeeding layer and so on. The number of feature 
maps generated per Conv2D is controlled by the filters argument.

Figure 1.4.2: A 3 × 3 kernel is convolved with an MNIST digit image.  
The convolution is shown in steps tn and tn+1 where the kernel moved by a stride of 1 pixel to the right. 
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The computation involved in the convolution is shown in Figure 1.4.3. For 
simplicity, a 5 × 5 input image (or input feature map) where a 3 × 3 kernel is applied 
is illustrated. The resulting feature map is shown after the convolution. The value 
of one element of the feature map is shaded. You'll notice that the resulting feature 
map is smaller than the original input image, this is because the convolution is only 
performed on valid elements. The kernel cannot go beyond the borders of the image. 
If the dimensions of the input should be the same as the output feature maps, Conv2D 
will accept the option padding='same'. The input is padded with zeroes around its 
borders to keep the dimensions unchanged after the convolution:

Figure 1.4.3: The convolution operation shows how one element of the feature map is computed

Pooling operations
The last change is the addition of a MaxPooling2D layer with the argument  
pool_size=2. MaxPooling2D compresses each feature map. Every patch of 
size pool_size × pool_size is reduced to one pixel. The value is equal to the 
maximum pixel value within the patch. MaxPooling2D is shown in the following 
figure for two patches:

Figure 1.4.4: MaxPooling2D operation. For simplicity,  
the input feature map is 4 × 4 resulting in a 2 × 2 feature map.
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The significance of MaxPooling2D is the reduction in feature maps size which 
translates to increased kernel coverage. For example, after MaxPooling2D(2),  
the 2 × 2 kernel is now approximately convolving with a 4 × 4 patch. The CNN 
has learned a new set of feature maps for a different coverage.

There are other means of pooling and compression. For example, to achieve 
a 50% size reduction as MaxPooling2D(2), AveragePooling2D(2) takes the 
average of a patch instead of finding the maximum. Strided convolution, 
Conv2D(strides=2,…) will skip every two pixels during convolution and 
will still have the same 50% size reduction effect. There are subtle differences 
in the effectiveness of each reduction technique.

In Conv2D and MaxPooling2D, both pool_size and kernel can be non-square. In 
these cases, both the row and column sizes must be indicated. For example, pool_
size=(1, 2) and kernel=(3, 5).

The output of the last MaxPooling2D is a stack of feature maps. The role of Flatten 
is to convert the stack of feature maps into a vector format that is suitable for either 
Dropout or Dense layers, similar to the MLP model output layer.

Performance evaluation and model summary
As shown in Listing 1.4.2, the CNN model in Listing 1.4.1 requires a smaller number 
of parameters at 80,226 compared to 269,322 when MLP layers are used. The 
conv2d_1 layer has 640 parameters because each kernel has 3 × 3 = 9 parameters, 
and each of the 64 feature maps has one kernel and one bias parameter. The number 
of parameters for other convolution layers can be computed in a similar way. Figure 
1.4.5 shows the graphical representation of the CNN MNIST digit classifier.

Table 1.4.1 shows that the maximum test accuracy of 99.4% which can be achieved 
for a 3–layer network with 64 feature maps per layer using the Adam optimizer with 
dropout=0.2. CNNs are more parameter efficient and have a higher accuracy than 
MLPs. Likewise, CNNs are also suitable for learning representations from sequential 
data, images, and videos.
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Listing 1.4.2 shows a summary of a CNN MNIST digit classifier:

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

conv2d_1 (Conv2D)            (None, 26, 26, 64)        640       

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64)        0         

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 11, 11, 64)        36928     

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64)          0         

_________________________________________________________________

conv2d_3 (Conv2D)            (None, 3, 3, 64)          36928     

_________________________________________________________________

flatten_1 (Flatten)          (None, 576)               0         

_________________________________________________________________

dropout_1 (Dropout)          (None, 576)               0         

_________________________________________________________________

dense_1 (Dense)              (None, 10)                5770      

_________________________________________________________________

activation_1 (Activation)    (None, 10)                0         

=================================================================

Total params: 80,266

Trainable params: 80,266

Non-trainable params: 0
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Figure 1.4.5: Graphical description of the CNN MNIST digit classifier

Layers Optimizer Regularizer Train Accuracy, % Test Accuracy, %
64-64-64 SGD Dropout(0.2) 97.76 98.50
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64-64-64 RMSprop Dropout(0.2) 99.11 99.00
64-64-64 Adam Dropout(0.2) 99.75 99.40
64-64-64 Adam Dropout(0.4) 99.64 99.30

Table 1.4.1: Different CNN network configurations and performance  
measures for the MNIST digit classification

Recurrent neural networks (RNNs)
We're now going to look at the last of our three artificial neural networks, 
Recurrent neural networks, or RNNs.

RNNs are a family of networks that are suitable for learning representations of 
sequential data like text in Natural Language Processing (NLP) or stream of sensor 
data in instrumentation. While each MNIST data sample is not sequential in nature, 
it is not hard to imagine that every image can be interpreted as a sequence of rows 
or columns of pixels. Thus, a model based on RNNs can process each MNIST image 
as a sequence of 28-element input vectors with timesteps equal to 28. The following 
listing shows the code for the RNN model in Figure 1.5.1:

Figure 1.5.1: RNN model for MNIST digit classification

In the following listing, Listing 1.5.1, the rnn-mnist-1.5.1.py shows the Keras code 
for MNIST digit classification using RNNs:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, SimpleRNN
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist
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# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
                 
# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# resize and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2 
             
# model is RNN with 256 units, input is 28-dim vector 28 timesteps
model = Sequential()
model.add(SimpleRNN(units=units,
                    dropout=dropout,
                    input_shape=input_shape))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of sgd optimizer
# accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

loss, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
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There are the two main differences between RNNs and the two previous models. 
First is the input_shape = (image_size, image_size) which is actually input_
shape = (timesteps, input_dim) or a sequence of input_dim—dimension 
vectors of timesteps length. Second is the use of a SimpleRNN layer to represent 
an RNN cell with units=256. The units variable represents the number of output 
units. If the CNN is characterized by the convolution of kernel across the input 
feature map, the RNN output is a function not only of the present input but also 
of the previous output or hidden state. Since the previous output is also a function 
of the previous input, the current output is also a function of the previous output 
and input and so on. The SimpleRNN layer in Keras is a simplified version of the 
true RNN. The following, equation describes the output of SimpleRNN:

ht = tanh(b + Wht-1 + Uxt)          (1.5.1)

In this equation, b is the bias, while W and U are called recurrent kernel 
(weights for previous output) and kernel (weights for the current input) respectively. 
Subscript t is used to indicate the position in the sequence. For SimpleRNN layer with 
units=256, the total number of parameters is 256 + 256 × 256 + 256 × 28 = 72,960 
corresponding to b, W, and U contributions.

Following figure shows the diagrams of both SimpleRNN and RNN that were used 
in the MNIST digit classification. What makes SimpleRNN simpler than RNN is the 
absence of the output values Ot = Vht + c before the softmax is computed:

Figure 1.5.2: Diagram of SimpleRNN and RNN

RNNs might be initially harder to understand when compared to MLPs or CNNs. In 
MLPs, the perceptron is the fundamental unit. Once the concept of the perceptron is 
understood, MLPs are just a network of perceptrons. In CNNs, the kernel is a patch 
or window that slides through the feature map to generate another feature map. In 
RNNs, the most important is the concept of self-loop. There is in fact just one cell. 
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The illusion of multiple cells appears because a cell exists per timestep but in fact, it 
is just the same cell reused repeatedly unless the network is unrolled. The underlying 
neural networks of RNNs are shared across cells.

The summary in Listing 1.5.2 indicates that using a SimpleRNN requires a fewer 
number of parameters. Figure 1.5.3 shows the graphical description of the RNN 
MNIST digit classifier. The model is very concise. Table 1.5.1 shows that the 
SimpleRNN has the lowest accuracy among the networks presented. 

Listing 1.5.2, RNN MNIST digit classifier summary:
_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

simple_rnn_1 (SimpleRNN)     (None, 256)               72960     

_________________________________________________________________

dense_1 (Dense)              (None, 10)                2570      

_________________________________________________________________

activation_1 (Activation)    (None, 10)                0         

=================================================================

Total params: 75,530

Trainable params: 75,530

Non-trainable params: 0

Figure 1.5.3: The RNN MNIST digit classifier graphical description
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Layers Optimizer Regularizer Train Accuracy, % Test Accuracy, %
256 SGD Dropout(0.2) 97.26 98.00
256 RMSprop Dropout(0.2) 96.72 97.60
256 Adam Dropout(0.2) 96.79 97.40
512 SGD Dropout(0.2) 97.88 98.30

Table 1.5.1: The different SimpleRNN network configurations and performance measures

In many deep neural networks, other members of the RNN family are more 
commonly used. For example, Long Short-Term Memory (LSTM) networks have 
been used in both machine translation and question answering problems. LSTM 
networks address the problem of long-term dependency or remembering relevant 
past information to the present output.

Unlike RNNs or SimpleRNN, the internal structure of the LSTM cell is more 
complex. Figure 1.5.4 shows a diagram of LSTM in the context of MNIST digit 
classification. LSTM uses not only the present input and past outputs or hidden 
states; it introduces a cell state, st, that carries information from one cell to the 
other. Information flow between cell states is controlled by three gates, ft, it and 
qt. The three gates have the effect of determining which information should be 
retained or replaced and the amount of information in the past and current input 
that should contribute to the current cell state or output. We will not discuss the 
details of the internal structure of the LSTM cell in this book. However, an intuitive 
guide to LSTM can be found at: http://colah.github.io/posts/2015-08-
Understanding-LSTMs.

The LSTM() layer can be used as a drop-in replacement to SimpleRNN(). If LSTM 
is overkill for the task at hand, a simpler version called Gated Recurrent Unit 
(GRU) can be used. GRU simplifies LSTM by combining the cell state and hidden 
state together. GRU also reduces the number of gates by one. The GRU() function 
can also be used as a drop-in replacement for SimpleRNN().

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Figure 1.5.4: Diagram of LSTM. The parameters are not shown for clarity

There are many other ways to configure RNNs. One way is making an RNN 
model that is bidirectional. By default, RNNs are unidirectional in the sense that 
the current output is only influenced by the past states and the current input. 
In bidirectional RNNs, future states can also influence the present state and the 
past states by allowing information to flow backward. Past outputs are updated 
as needed depending on the new information received. RNNs can be made 
bidirectional by calling a wrapper function. For example, the implementation 
of bidirectional LSTM is Bidirectional(LSTM()).

For all types of RNNs, increasing the units will also increase the capacity. However, 
another way of increasing the capacity is by stacking the RNN layers. You should 
note though that as a general rule of thumb, the capacity of the model should only 
be increased if needed. Excess capacity may contribute to overfitting, and as a result, 
both longer training time and slower performance during prediction.
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Conclusion
This chapter provided an overview of the three deep learning models – MLPs, 
RNNs, CNNs – and also introduced Keras, a library for the rapid development, 
training and testing those deep learning models. The sequential API of Keras 
was also discussed. In the next chapter, the Functional API will be presented, 
which will enable us to build more complex models specifically for advanced 
deep neural networks.

This chapter also reviewed the important concepts of deep learning such 
as optimization, regularization, and loss function. For ease of understanding, 
these concepts were presented in the context of the MNIST digit classification. 
Different solutions to the MNIST digit classification using artificial neural networks, 
specifically MLPs, CNNs, and RNNs, which are important building blocks of deep 
neural networks, were also discussed together with their performance measures.

With the understanding of deep learning concepts, and how Keras can be used 
as a tool with them, we are now equipped to analyze advanced deep learning 
models. After discussing Functional API in the next chapter, we'll move onto 
the implementation of popular deep learning models. Subsequent chapters will 
discuss advanced topics such as autoencoders, GANs, VAEs, and reinforcement 
learning. The accompanying Keras code implementations will play an important 
role in understanding these topics.
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Deep Neural Networks
In this chapter, we'll be examining deep neural networks. These networks have 
shown excellent performance in terms of the accuracy of their classification on 
more challenging and advanced datasets like ImageNet, CIFAR10 (https://www.
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf), and CIFAR100. For 
conciseness, we'll only be focusing on two networks, ResNet [2][4] and DenseNet 
[5]. While we will go into much more detail, it's important to take a minute to 
introduce these networks.

ResNet introduced the concept of residual learning which enabled it to build 
very deep networks by addressing the vanishing gradient problem in deep 
convolutional networks.

DenseNet improved the ResNet technique further by allowing every convolution 
to have direct access to inputs, and lower layer feature maps. It's also managed 
to keep the number of parameters low in deep networks by utilizing both the 
Bottleneck and Transition layers.

But why these two models, and not others? Well, since their introduction, there 
have been countless models such as ResNeXt [6] and FractalNet [7] which have 
been inspired by the technique used by these two networks. Likewise, with an 
understanding of both ResNet and DenseNet, we'll be able to use their design 
guidelines to build our own models. By using transfer learning, this will also 
allow us to take advantage of pretrained ResNet and DenseNet models for our 
own purposes. These reasons alone, along with their compatibility with Keras, 
make the two models ideal for exploring and complimenting the advanced deep 
learning scope of this book.
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While this chapter's focus is on deep neural networks; we'll begin this chapter by 
discussing an important feature of Keras called the Functional API. This API acts 
as an alternative method for building networks in Keras and enables us to build 
more complex networks that cannot be accomplished by the sequential model. The 
reason why we're focusing so much on this API is that it will become a very useful 
tool for building deep networks such as the two we're focusing on in this chapter. 
It's recommended that you've completed, Chapter 1, Introducing Advanced Deep 
Learning with Keras, before moving onto this chapter as we'll refer to introductory 
level code and concepts explored in that chapter as we take them to an advanced 
level in this chapter.

The goals of this chapter is to introduce:

•	 The Functional API in Keras, as well as exploring examples of networks 
running it

•	 Deep Residual Networks (ResNet versions 1 and 2) implementation in Keras
•	 The implementation of Densely Connected Convolutional Networks 

(DenseNet) into Keras
•	 Explore two popular deep learning models, ResNet, and DenseNet

Functional API
In the sequential model that we first introduced in Chapter 1, Introducing Advanced 
Deep Learning with Keras, a layer is stacked on top of another layer. Generally, the 
model will be accessed through its input and output layers. We also learned that 
there is no simple mechanism if we find ourselves wanting to add an auxiliary 
input at the middle of the network, or even to extract an auxiliary output before 
the last layer.

That model also had its downside, for example, it doesn't support graph-like models 
or models that behave like Python functions. In addition, it's also difficult to share 
layers between the two models. Such limitations are addressed by the functional 
API and are the reason why it's a vital tool for anyone wanting to work with deep 
learning models.
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The Functional API is guided by the following two concepts:

•	 A layer is an instance that accepts a tensor as an argument. The output of 
a layer is another tensor. To build a model, the layer instances are objects that 
are chained to one another through both input and output tensors. This will 
have similar end-result as would stacking multiple layers in the sequential 
model have. However, using layer instances makes it easier for models to 
have either auxiliary or multiple inputs and outputs since the input/output 
of each layer will be readily accessible.

•	 A model is a function between one or more input tensors and output tensors. 
In between the model input and output, tensors are the layer instances that 
are chained to one another by layer input and output tensors. A model is, 
therefore, a function of one or more input layers and one or more output 
layers. The model instance formalizes the computational graph on how 
the data flows from input(s) to output(s).

After you've completed building the functional API model, the training and 
evaluation are then performed by the same functions used in the sequential 
model. To illustrate, in a functional API, a 2D convolutional layer, Conv2D, with 
32 filters and with x as the layer input tensor and y as the layer output tensor can 
be written as:

y = Conv2D(32)(x)

We're also able to stack multiple layers to build our models. For example, we can 
rewrite the CNN on MNIST code, the same code we created in the last chapter, 
as shown in following listing:

You'll find Listing 2.1.1, cnn-functional-2.1.1.py, as follows. This shows us 
how we can convert the cnn-mnist-1.4.1.py code using the functional API:

import numpy as np
from keras.layers import Dense, Dropout, Input
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.models import Model
from keras.datasets import mnist
from keras.utils import to_categorical

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
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# reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
# image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 64 
dropout = 0.3 

# use functional API to build cnn layers
inputs = Input(shape=input_shape)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(inputs)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(y)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(y)
# image to vector before connecting to dense layer
y = Flatten()(y)
# dropout regularization
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

# build the model by supplying inputs/outputs
model = Model(inputs=inputs, outputs=outputs)
# network model in text
model.summary()

# classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
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              optimizer='adam',
              metrics=['accuracy'])

# train the model with input images and labels
model.fit(x_train,
          y_train,
          validation_data=(x_test, y_test),
          epochs=20,
          batch_size=batch_size)

# model accuracy on test dataset
score = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

By default, MaxPooling2D uses pool_size=2, so the argument has been removed.

In the preceding listing every layer is a function of a tensor. They each generate 
a tensor as an output which becomes the input to the next layer. To create this 
model, we can call Model() and supply both the inputs and outputs tensors, 
or alternatively the lists of tensors. Everything else remains the same.

The same listing can also be trained and evaluated using the fit() and evaluate() 
functions, similar to the sequential model. The sequential class is, in fact, a subclass 
of the Model class. We need to remember that we inserted the validation_data 
argument in the fit() function to see the progress of validation accuracy during 
training. The accuracy ranges from 99.3% to 99.4% in 20 epochs.

Creating a two-input and one-output model
We're now going to do something really exciting, creating an advanced model 
with two inputs and one output. Before we start, it's important to know that this 
is something that is not straightforward in the sequential model.

Let's suppose a new model for the MNIST digit classification is invented, and it's 
called the Y-Network, as shown in Figure 2.1.1. The Y-Network uses the same input 
twice, both on the left and right CNN branches. The network combines the results 
using concatenate layer. The merge operation concatenate is similar to stacking 
two tensors of the same shape along the concatenation axis to form one tensor. For 
example, concatenating two tensors of shape (3, 3, 16) along the last axis will result 
in a tensor of shape (3, 3, 32). 
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Everything else after the concatenate layer will remain the same as the previous 
CNN model. That is Flatten-Dropout-Dense:

Figure 2.1.1: The Y-Network accepts the same input twice but processes the input in two branches  
of convolutional networks. The outputs of the branches are combined using the concatenate layer.  

The last layer prediction is going to be similar to the previous CNN example.

To improve the performance of the model in Listing 2.1.1, we can propose several 
changes. Firstly, the branches of the Y-Network are doubling the number of filters 
to compensate for the halving of the feature maps size after MaxPooling2D(). For 
example, if the output of the first convolution is (28, 28, 32), after max pooling 
the new shape is (14, 14, 32). The next convolution will have a filter size of 64 
and output dimensions of (14, 14, 64).
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Second, although both branches have the same kernel size of 3, the right branch 
use a dilation rate of 2. Figure 2.1.2 shows the effect of different dilation rates on a 
kernel with size 3. The idea is that by increasing the coverage of the kernel using 
dilation rate, the CNN will enable the right branch to learn different feature maps. 
We'll use the option padding='same' to ensure that we will not have negative tensor 
dimensions when the dilated CNN is used. By using padding='same', we'll keep the 
dimensions of the input the same as the output feature maps. This is accomplished 
by padding the input with zeros to make sure that the output has the same size:

Figure 2.1.2: By increasing the dilate rate from 1, the effective kernel coverage also increases

Following listing shows the implementation of Y-Network. The two branches 
are created by the two for loops. Both branches expect the same input shape. The 
two for loops will create two 3-layer stacks of Conv2D-Dropout-MaxPooling2D. 
While we used the concatenate layer to combine the outputs of the left and right 
branches, we could also utilize the other merge functions of Keras, such as add, 
dot, multiply. The choice of the merge function is not purely arbitrary but must 
be based on a sound model design decision.

In the Y-Network, concatenate will not discard any portion of the feature maps. 
Instead, we'll let the Dense layer figure out what to do with the concatenated 
feature maps. Listing 2.1.2, cnn-y-network-2.1.2.py shows the Y-Network 
implementation using the Functional API:

import numpy as np

from keras.layers import Dense, Dropout, Input
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.models import Model
from keras.layers.merge import concatenate
from keras.datasets import mnist
from keras.utils import to_categorical
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from keras.utils import plot_model

# load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

   # compute the number of labels
   num_labels = len(np.unique(y_train))

   # convert to one-hot vector
   y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
dropout = 0.4
n_filters = 32

# left branch of Y network
left_inputs = Input(shape=input_shape)
x = left_inputs
filters = n_filters
# 3 layers of Conv2D-Dropout-MaxPooling2D
# number of filters doubles after each layer (32-64-128)
for i in range(3):
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(x)
    x = Dropout(dropout)(x)
    x = MaxPooling2D()(x)
    filters *= 2

# right branch of Y network
right_inputs = Input(shape=input_shape)
y = right_inputs
filters = n_filters
# 3 layers of Conv2D-Dropout-MaxPooling2D
# number of filters doubles after each layer (32-64-128)
for i in range(3):
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
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               padding='same',
               activation='relu',
               dilation_rate=2)(y)
    y = Dropout(dropout)(y)
    y = MaxPooling2D()(y)
    filters *= 2

# merge left and right branches outputs
y = concatenate([x, y])
# feature maps to vector before connecting to Dense layer
y = Flatten()(y)
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

# build the model in functional API
model = Model([left_inputs, right_inputs], outputs)
# verify the model using graph
plot_model(model, to_file='cnn-y-network.png', show_shapes=True)
# verify the model using layer text description
model.summary()

# classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# train the model with input images and labels
model.fit([x_train, x_train],
          y_train,
          validation_data=([x_test, x_test], y_test),
          epochs=20,
          batch_size=batch_size)

# model accuracy on test dataset
score = model.evaluate([x_test, x_test], y_test, batch_size=batch_
size)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

Taking a step back, we can note that the Y-Network is expecting two inputs for 
training and validation. The inputs are identical, so [x_train, x_train] is 
supplied.

Over the course of the 20 epochs, the accuracy of the Y-Network ranges from 99.4% 
to 99.5%. This is a slight improvement over the 3-stack CNN which achieved a range 
between 99.3% and 99.4% accuracy range. However, this was at the cost of both 
higher complexity and more than double the number of parameters. The following 
figure, Figure 2.1.3, shows the architecture of the Y-Network as understood by Keras 
and generated by the plot_model() function:
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Figure 2.1.3: The CNN Y-Network as implemented in Listing 2.1.2
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This concludes our look at the Functional API. We should take this time to remember 
that the focus of this chapter is building deep neural networks, specifically ResNet 
and DenseNet. Therefore, we're only covering the Functional API materials needed 
to build them, as to cover the entire API would be beyond the scope of this book.

The reader is referred to visit https://keras.io/ for additional 
information on functional API.

Deep residual networks (ResNet)
One key advantage of deep networks is that they have a great ability to learn 
different levels of representations from both inputs and feature maps. In both 
classification, segmentation, detection and a number of other computer vision 
problems, learning different levels of features generally leads to better performance.

However, you'll find that it's not easy to train deep networks as a result of 
the gradient vanishes (or explodes) with depth in the shallow layers during 
backpropagation. Figure 2.2.1 illustrates the problem of vanishing gradient. The 
network parameters are updated by backpropagation from the output layer 
to all previous layers. Since backpropagation is based on the chain rule, there is 
a tendency for gradients to diminish as they reach the shallow layers. This is due 
to the multiplication of small numbers, especially for the small absolute value of 
errors and parameters.

The number of multiplication operations will be proportional to the depth of the 
network. It's also worth noting that if the gradient degrades, the parameters will not 
be updated appropriately. 

https://keras.io/
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Hence, the network will fail to improve its performance:

Figure 2.2.1: A common problem in deep networks is that the gradient  
vanishes as it reaches the shallow layers during backpropagation.
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Figure 2.2.2: A comparison between a block in a typical CNN and a block in ResNet.  
To prevent degradation in gradients during backpropagation, a shortcut connection is introduced.

To alleviate the degradation of the gradient in deep networks, ResNet introduced 
the concept of a deep residual learning framework. Let's analyze a block, a small 
segment of our deep network.

The preceding figure shows a comparison between a typical CNN block and 
a ResNet residual block. The idea of ResNet is that in order to prevent the gradient 
from degrading, we'll let the information flow through the shortcut connections 
to reach the shallow layers.

Next, we're going to look at more details within the discussion of the differences 
between the two blocks. Figure 2.2.3 shows more details of the CNN block of another 
commonly used deep network, VGG[3], and ResNet. We'll represent the layer feature 
maps as x. The feature maps at layer l are lx . The operations in the CNN layer are 
Conv2D-Batch Normalization (BN)-ReLU.

Let's suppose we represent this set of operations in the form of H() = Conv2D-Batch 
Normalization(BN)-ReLU, that will then mean that:

( )1 -2x l lH x− =           (Equation 2.2.1)

( )-1l lHx x=              (Equation 2.2.2)

In other words, the feature maps at layer l - 2 are transformed to 1l−x  by H() = 
Conv2D-Batch Normalization(BN)-ReLU. The same set of operations is applied 
to transform 1l−x  to lx . To put this another way, if we have an 18-layer VGG, then 
there are 18 H() operations before the input image is transformed to the 18th layer 
feature maps.
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Generally speaking, we can observe that the layer l output feature maps are directly 
affected by the previous feature maps only. Meanwhile, for ResNet:

( )-1 -2l lHx x=                                (Equation 2.2.3)

( )( )-1 -2l l lReLU Fx x x= +           (Equation 2.2.4)

Figure 2.2.3: A detailed layer operations for a plain CNN block and a Residual block

( )1lF −x  is made of Conv2D-BN, which is also known as the residual mapping. 
The + sign is tensor element-wise addition between the shortcut connection and 
the output of ( )1lF −x . The shortcut connection doesn't add extra parameters nor 
extra computational complexity.
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The add operation can be implemented in Keras by the add() merge function. 
However, both the ( )1lF −x  equation and x should have the same dimensions. 
If the dimensions are different, for example, when changing the feature maps 
size, we should perform a linear projection on x as to match the size of ( )1lF −x .  
In the original paper, the linear projection for the case, when the feature maps 
size is halved, is done by a Conv2D with a 1 × 1 kernel and strides=2.

Back in Chapter 1, Introducing Advanced Deep Learning with Keras, we discussed 
that stride > 1 is equivalent to skipping pixels during convolution. For example, 
if strides=2, we could skip every other pixel when we slide the kernel during the 
convolution process.

The preceding Equations 2.2.3 and 2.2.4, both model ResNet residual block 
operations. They imply that if the deeper layers can be trained to have fewer 
errors, then there is no reason why the shallower layers should have higher errors.

Knowing the basic building blocks of ResNet, we're able to design a deep residual 
network for image classification. This time, however, we're going to tackle a more 
challenging and advanced dataset.

In our examples, we're going to consider CIFAR10, which was one of the datasets the 
original paper was validated. In this example, Keras provides an API to conveniently 
access the CIFAR10 dataset, as shown:

from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

Like MNIST, the CIFAR10 dataset has 10 categories. The dataset is a collection of 
small (32 × 32) RGB real-world images of an airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and a truck corresponding to each of the 10 categories. Figure 
2.2.4 shows sample images from CIFAR10. 
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In the dataset, there are 50,000 labeled train images and 10,000 labeled test images for 
validation:

Figure 2.2.4: Sample images from the CIFAR10 dataset.  
The full dataset has 50,000 labeled train images and 10,000 labeled test images for validation.

For the CIFAR10 data, ResNet can be built using different network architectures 
as shown in Table 2.2.1. The values of both n and the corresponding architectures 
of ResNet were validated in Table 2.2.2. Table 2.2.1 means we have three sets of 
residual blocks. Each set has 2n layers corresponding to n residual blocks. The 
extra layer in 32 × 32 is the first layer for the input image.

The kernel size is 3, except for the transition between two feature maps with different 
sizes that implements a linear mapping. For example, a Conv2D with a kernel size 
of 1 and strides=2. For the sake of consistency with DenseNet, we'll use the term 
Transition layer when we join two residual blocks of different sizes.

ResNet uses kernel_initializer='he_normal' in order to aid the 
convergence when backpropagation is taking place [1]. The last layer is made 
of AveragePooling2D-Flatten-Dense. It's worth noting at this point that 
ResNet does not use dropout. It also appears that the add merge operation and 
the 1 × 1 convolution have a self-regularizing effect. Figure 2.2.4 shows the ResNet 
model architecture for the CIFAR10 dataset as described in Table 2.2.1.



Chapter 2

[ 55 ]

The following listing shows the partial ResNet implementation within Keras. The 
code has been contributed to the Keras GitHub repository. From Table 2.2.2 we can 
also see that by modifying the value of n, we're able to increase the depth of the 
networks. For example, for n = 18, we already have ResNet110, a deep network 
with 110 layers. To build ResNet20, we use n = 3:

n = 3

# model version
# orig paper: version = 1 (ResNet v1), 
# Improved ResNet: version = 2 (ResNet v2)
version = 1

# computed depth from supplied model parameter n
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2
…
if version == 2:
    model = resnet_v2(input_shape=input_shape, depth=depth)
else:
    model = resnet_v1(input_shape=input_shape, depth=depth)

The resnet_v1() method is a model builder for ResNet. It uses a utility function, 
resnet_layer() to help build the stack of Conv2D-BN-ReLU.

It's referred to as version 1, as we will see in the next section, an improved ResNet 
was proposed, and that has been called ResNet version 2, or v2. Over ResNet, 
ResNet v2 has an improved residual block design resulting in better performance.

Layers Output 
Size

Filter 
Size

Operations

Convolution 32 × 32 16 3 3 2Conv D×

Residual Block
(1)

32 × 32 3 3 2
3 3 2

Conv D
n

Conv D
× 

× × 

Transition Layer
(1)

32 × 32 { }1 1 2 , 2Conv D strides× =
16 × 16

Residual Block
(2)

16 × 16 32 3 3 2 , 2 1 2
3 3 2

Conv D strides if st Conv D
n

Conv D
× = 

× × 
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Transition Layer
(2)

16 × 16 { }1 1 2 , 2Conv D strides× =
8 × 8

Residual Block
(3)

8 × 8 64 3 3 2 , 2 1 2
3 3 2

Conv D strides if st Conv D
n

Conv D
× = 

× × 

Average Pooling 1 × 1 8 8 2AveragePooling D×

Table 2.2.1: ResNet network architecture configuration

Figure 2.2.4: The model architecture of ResNet for the CIFAR10 dataset classification

# Layers n % Accuracy on CIFAR10 
(Original paper)

% Accuracy on CIFAR10 
(This book)

ResNet20 3 91.25 92.16
ResNet32 5 92.49 92.46
ResNet44 7 92.83 92.50
ResNet56 9 93.03 92.71
ResNet110 18 93.57 92.65

Table 2.2.2: ResNet architectures validated with CIFAR10

The following listing shows the partial code of resnet-cifar10-2.2.1.py, 
which is the Keras model implementation of ResNet v1:

def resnet_v1(input_shape, depth, num_classes=10):
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    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n+2 (eg 20, 32,  
44 in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)

    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack > 0 and res_block == 0:
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            if stack > 0 and res_block == 0
                # linear projection residual shortcut connection 
                # to match changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2

    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model
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There are some minor differences from the original implementation of ResNet. In 
particular, we don't use SGD, and instead, we'll use Adam. This is because ResNet 
is easier to converge with Adam. We'll also use a learning rate (lr) scheduler, lr_
schedule(), in order to schedule the decrease in lr at 80, 120, 160, and 180 epochs 
from the default 1e-3. The lr_schedule() function will be called after every epoch 
during training as part of the callbacks variable.

The other callback saves the checkpoint every time there is progress made in the 
validation accuracy. When training deep networks, it is a good practice to save 
the model or weight checkpoint. This is because it takes a substantial amount of 
time to train deep networks. When you want to use your network, all you need 
to do is simply reload the checkpoint, and the trained model is restored. This can 
be accomplished by calling Keras load_model(). The lr_reducer() function 
is included. In case the metric has plateaued before the schedule reduction, this 
callback will reduce the learning rate by the factor if the validation loss has not 
improved after patience=5 epochs.

The callbacks variable is supplied when the model.fit() method is called. 
Similar to the original paper, the Keras implementation uses data augmentation, 
ImageDataGenerator(), in order to provide additional training data as part of 
the regularization schemes. As the number of training data increases, generalization 
will improve.

For example, a simple data augmentation is flipping the photo of the dog, as 
shown in following figure (horizontal_flip=True). If it is an image of a dog, 
then the flipped image is still an image of a dog. You can also perform other 
transformation, such as scaling, rotation, whitening, and so on, and the label 
will still remain the same:

Figure 2.2.5: A simple data augmentation is flipping the original image
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The complete code is available on GitHub: (https://github.com/PacktPublishing/
Advanced-Deep-Learning-with-Keras).

It's often difficult to exactly duplicate the implementation of the original paper, 
especially in the optimizer used and data augmentation, as there are slight 
differences in the performance of the Keras ResNet implementation in this 
book and the model in the original paper.

ResNet v2
After the release of the second paper on ResNet [4], the original model presented 
in the previous section has been known as ResNet v1. The improved ResNet is 
commonly called ResNet v2. The improvement is mainly found in the arrangement 
of layers in the residual block as shown in following figure.

 The prominent changes in ResNet v2 are:

•	 The use of a stack of 1 × 1 - 3 × 3 - 1 × 1 BN-ReLU-Conv2D
•	 Batch normalization and ReLU activation come before 2D convolution

Figure 2.3.1: A comparison of residual blocks between ResNet v1 and ResNet v2

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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ResNet v2 is also implemented in the same code as resnet-cifar10-2.2.1.py:

def resnet_v2(input_shape, depth, num_classes=10):
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)

    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input 
    # before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)

    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # 1st layer but not 1st stage
                    strides = 2    # downsample

            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
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                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection 
                # to match changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = add([x, y])

        num_filters_in = num_filters_out

    # add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

ResNet v2's model builder is shown in the following code. For example, to build 
ResNet110 v2, we'll use n = 12:

n = 12

# model version
# orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 
(ResNet v2)
version = 2

# computed depth from supplied model parameter n
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2
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…
if version == 2:
    model = resnet_v2(input_shape=input_shape, depth=depth)
else:
    model = resnet_v1(input_shape=input_shape, depth=depth)

The accuracy of ResNet v2 is shown in following table:

# Layers n % Accuracy on CIFAR10 
(Original paper)

% Accuracy on CIFAR10 
(This book)

ResNet56 9 NA 93.01
ResNet110 18 93.63 93.15

Table 2.3.1: The ResNet v2 architectures validated on the CIFAR10 dataset

In the Keras applications package, ResNet50 has been implemented as well with 
the corresponding checkpoint for reuse. This is an alternative implementation but 
tied to the 50-layer ResNet v1.

Densely connected convolutional 
networks (DenseNet)

Figure 2.4.1: A 4-layer Dense block in DenseNet.  
The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach. 
Instead of using shortcut connections, all the previous feature maps will become 
the input of the next layer. The preceding figure, shows an example of a dense 
interconnection in one Dense block.
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For simplicity, in this figure, we'll only show four layers. Notice that the input 
to layer l is the concatenation of all previous feature maps. If we designate the  
BN-ReLU-Conv2D as the operation H(x), then the output of layer l is:

( )0 1 2 1, , , ,l lH −=x x x x x…           (Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer 
is called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper, 
Densely Connected Convolutional Networks, Huang, and others, 2017 [5]. Therefore, 
if the number of feature maps 0x  is 0k , then the total number of feature maps at the 
end of the 4-layer Dense block in Figure 2.4.1 will be 04 k k× + .

DenseNet also recommends that the Dense block is preceded by BN-ReLU-Conv2D, 
along with the number of feature maps twice the growth rate, 0 2k k= × . Therefore, 
at the end of the Dense block, the total number of feature maps will be 72. We'll also 
use the same kernel size, which is 3. At the output layer, DenseNet suggests that we 
perform an average pooling before the Dense() and softmax classifier. If the data 
augmentation is not used, a dropout layer must follow the Dense block Conv2D:

Figure 2.4.2: A layer in a Dense block of DenseNet, with and without the bottleneck layer  
BN-ReLU-Conv2D(1). We'll include the kernel size as an argument of Conv2D for clarity.

As the network gets deeper, two new problems will occur. Firstly, since every layer 
contributes k feature maps, the number of inputs at layer l is ( ) 01l k k− × + . Therefore, 
the feature maps can grow rapidly within deep layers, resulting in the computation 
becoming slow. For example, for a 101-layer network this will be 1200 + 24 = 1224 
for k = 12.

Secondly, similar to ResNet, as the network gets deeper the feature maps size will be 
reduced to increase the coverage of the kernel. If DenseNet uses concatenation in the 
merge operation, it must reconcile the differences in size.
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To prevent the number of feature maps from increasing to the point of being 
computationally inefficient, DenseNet introduced the Bottleneck layer as shown 
in Figure 2.4.2. The idea is that after every concatenation; a 1 × 1 convolution with 
a filter size equal to 4k is now applied. This dimensionality reduction technique 
prevents the number of feature maps to be processed by Conv2D(3) from rapidly 
increasing. 

The Bottleneck layer then modifies the DenseNet layer as BN-ReLU-Conv2D(1)-BN-
ReLU-Conv2D(3), instead of just BN-ReLU-Conv2D(3). We've included the kernel size 
as an argument of Conv2D for clarity. With the Bottleneck layer, every Conv2D(3) is 
processing just the 4k feature maps instead of ( ) 01l k k− × +  for layer l. For example, 
for the 101-layer network, the input to the last Conv2D(3) is still 48 feature maps for 
k = 12 instead of 1224 as computed previously:

Figure 2.4.3: The transition layer in between two Dense blocks

To solve the problem in feature maps size mismatch, DenseNet divides a deep 
network into multiple dense blocks that are joined together by transition layers 
as shown in the preceding figure. Within each dense block, the feature map size 
(that is, width and height) will remain constant.

The role of the transition layer is to transition from one feature map size to a smaller 
feature map size between two dense blocks. The reduction in size is usually half. This 
is accomplished by the average pooling layer. For example, an AveragePooling2D 
with default pool_size=2 reduces the size from (64, 64, 256) to (32, 32, 256). The 
input to the transition layer is the output of the last concatenation layer in the 
previous dense block.
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However, before the feature maps are passed to average pooling, their number 
will be reduced by a certain compression factor, 0 1θ< < , using Conv2D(1). 
DenseNet uses 0.5θ =  in their experiment. For example, if the output of the last 
concatenation of the previous dense block is (64, 64, 512), then after Conv2D(1) 
the new dimensions of the feature maps will be (64, 64, 256). When compression 
and dimensionality reduction are put together, the transition layer is made of  
BN-Conv2D(1)-AveragePooling2D layers. In practice, batch normalization 
precedes the convolutional layer.

Building a 100-layer DenseNet-BC 
for CIFAR10
We're now going to build a DenseNet-BC (Bottleneck-Compression) with 100 layers 
for the CIFAR10 dataset, using the design principles that we discussed above. 

Following table, shows the model configuration, while Figure 2.4.3 shows the model 
architecture. Listing 2.4.1 shows us the partial Keras implementation of DenseNet-BC 
with 100 layers. We need to take note that we use RMSprop since it converges better 
than SGD or Adam when using DenseNet.

Layers Output Size DenseNet-100 BC
Convolution 32 x 32 3 3 2Conv D×

Dense Block
(1)

32 x 32 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 

Transition Layer
(1)

32 x 32 1 1 2
2 2 2

Conv D
AveragePooling D

× 
 × 16 x 16

Dense Block
(2)

16 x 16 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 

Transition Layer
(2)

16 x 16 1 1 2
2 2 2

Conv D
AveragePooling D

× 
 × 8 x 8

Dense Block
(3)

8 x 8 1 1 2
16

3 3 2
Conv D
Conv D

× 
× × 
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Average Pooling 1 x 1 8 8 2AveragePooling D×

Classification Layer Flatten-Dense(10)-softmax 

Table 2.4.1: DenseNet-BC with 100 layers for CIFAR10 classification

Figure 2.4.3: Model architecture of DenseNet-BC with 100 layers for CIFAR10 classification

Listing 2.4.1, densenet-cifar10-2.4.1.py: Partial Keras implementation 
of DenseNet-BC with 100 layers as shown in Table 2.4.1:

# start model definition
# densenet CNNs (composite function) are made of BN-ReLU-Conv2D
inputs = Input(shape=input_shape)
x = BatchNormalization()(inputs)
x = Activation('relu')(x)
x = Conv2D(num_filters_bef_dense_block,
           kernel_size=3,
           padding='same',
           kernel_initializer='he_normal')(x)
x = concatenate([inputs, x])

# stack of dense blocks bridged by transition layers
for i in range(num_dense_blocks):
    # a dense block is a stack of bottleneck layers
    for j in range(num_bottleneck_layers):
        y = BatchNormalization()(x)
        y = Activation('relu')(y)
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        y = Conv2D(4 * growth_rate,
                   kernel_size=1,
                   padding='same',
                   kernel_initializer='he_normal')(y)
        if not data_augmentation:
            y = Dropout(0.2)(y)
        y = BatchNormalization()(y)
        y = Activation('relu')(y)
        y = Conv2D(growth_rate,
                   kernel_size=3,
                   padding='same',
                   kernel_initializer='he_normal')(y)
        if not data_augmentation:
            y = Dropout(0.2)(y)
        x = concatenate([x, y])

    # no transition layer after the last dense block
    if i == num_dense_blocks - 1:
        continue

    # transition layer compresses num of feature maps and 
    # reduces the size by 2
    num_filters_bef_dense_block += num_bottleneck_layers * growth_rate
    num_filters_bef_dense_block = int(num_filters_bef_dense_block * 
compression_factor)
    y = BatchNormalization()(x)
    y = Conv2D(num_filters_bef_dense_block,
               kernel_size=1,
               padding='same',
               kernel_initializer='he_normal')(y)
    if not data_augmentation:
        y = Dropout(0.2)(y)
    x = AveragePooling2D()(y)

# add classifier on top
# after average pooling, size of feature map is 1 x 1
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
                kernel_initializer='he_normal',
                activation='softmax')(y)

# instantiate and compile model
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# orig paper uses SGD but RMSprop works better for DenseNet
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(1e-3),
              metrics=['accuracy'])
model.summary()

Training the Keras implementation in Listing 2.4.1 for 200 epochs achieves a 93.74% 
accuracy vs. the 95.49% as reported in the paper. Data augmentation is used. We 
used the same callback functions in ResNet v1/v2 for DenseNet.

For the deeper layers, the growth_rate and depth variables must be changed using 
the table on the Python code. However, it will take a substantial amount of time to 
train the network at a depth of 250, or 190 as done in the paper. To give us an idea 
of training time, each epoch runs for about an hour on a 1060Ti GPU. Though there 
is also an implementation of DenseNet in the Keras applications module, it was 
trained on ImageNet.

Conclusion
In this chapter, we've presented Functional API as an advanced method for building 
complex deep neural network models using Keras. We also demonstrated how the 
Functional API could be used to build the multi-input-single-output Y-Network. This 
network, when compared to a single branch CNN network, archives better accuracy. 
For the rest of the book, we'll find the Functional API indispensable in building more 
complex and advanced models. For example, in the next chapter, the Functional API 
will enable us to build a modular encoder, decoder, and autoencoder.

We also spent a significant time exploring two important deep networks, ResNet and 
DenseNet. Both of these networks have been used not only in classification but also 
in other areas, such as segmentation, detection, tracking, generation, and visual/
semantic understanding. We need to remember that it's more important that we 
understand the model design decisions in ResNet and DenseNet more closely than 
just following the original implementation. In that manner, we'll be able to use the 
key concepts of ResNet and DenseNet for our purposes.
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Autoencoders
In the previous chapter, Chapter 2, Deep Neural Networks, you were introduced 
to the concepts of deep neural networks. We're now going to move on to look 
at autoencoders, which are a neural network architecture that attempts to find 
a compressed representation of the given input data.

Similar to the previous chapters, the input data may be in multiple forms including, 
speech, text, image, or video. An autoencoder will attempt to find a representation 
or code in order to perform useful transformations on the input data. As an example, 
in denoising autoencoders, a neural network will attempt to find a code that can 
be used to transform noisy data into clean ones. Noisy data could be in the form 
of an audio recording with static noise which is then converted into clear sound. 
Autoencoders will learn the code automatically from the data alone without 
human labeling. As such, autoencoders can be classified under unsupervised 
learning algorithms.

In later chapters of this book, we will look at Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs) which are also representative 
forms of unsupervised learning algorithms. This is in contrast to the supervised 
learning algorithms we discussed in the previous chapters where human 
annotations were required.

In its simplest form, an autoencoder will learn the representation or code by 
trying to copy the input to output. However, using an autoencoder is not as simple 
as copying the input to output. Otherwise, the neural network would not be able 
to uncover the hidden structure in the input distribution.

An autoencoder will encode the input distribution into a low-dimensional tensor, 
which usually takes the form of a vector. This will approximate the hidden 
structure that is commonly referred to as the latent representation, code, or vector. 
This process constitutes the encoding part. The latent vector will then be decoded 
by the decoder part to recover the original input. 
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As a result of the latent vector being a low-dimensional compressed representation 
of the input distribution, it should be expected that the output recovered by the 
decoder can only approximate the input. The dissimilarity between the input and 
the output can be measured by a loss function.

But why would we use autoencoders? Simply put, autoencoders have practical 
applications both in their original form or as part of more complex neural networks. 
They're a key tool in understanding the advanced topics of deep learning as 
they give you a low-dimensional latent vector. Furthermore, it can be efficiently 
processed to perform structural operations on the input data. Common operations 
include denoising, colorization, feature-level arithmetic, detection, tracking, and 
segmentation, to name just a few.

In summary, the goal of this chapter is to present:

•	 The principles of autoencoders
•	 How to implement autoencoders into the Keras neural network library
•	 The main features of denoising and colorization autoencoders

Principles of autoencoders
In this section, we're going to go over the principles of autoencoders. In this section, 
we're going to be looking at autoencoders with the MNIST dataset, which we were 
first introduced to in the previous chapters.

Firstly, we need to be made aware that an autoencoder has two operators, these are:

•	 Encoder: This transforms the input, x, into a low-dimensional latent vector, 
z = f(x). Since the latent vector is of low dimension, the encoder is forced 
to learn only the most important features of the input data. For example, in 
the case of MNIST digits, the important features to learn may include writing 
style, tilt angle, roundness of stroke, thickness, and so on. Essentially, these 
are the most important information needed to represent digits zero to nine.

•	 Decoder: This tries to recover the input from the latent vector, ( )g =z �x
. Although the latent vector has a low dimension, it has a sufficient size 
to allow the decoder to recover the input data.

The goal of the decoder is to make �x  as close as possible to x. Generally, both the 
encoder and decoder are non-linear functions. The dimension of z is a measure 
of the number of salient features it can represent. The dimension is usually much 
smaller than the input dimensions for efficiency and in order to constrain the 
latent code to learn only the most salient properties of the input distribution[1].
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The autoencoder has the tendency to memorize the input when the dimension of the 
latent code is significantly bigger than x.

A suitable loss function, ( ), �L x x , is a measure of how dissimilar the input, x, from 
the output which is the recovered input, �x . As shown in the following equation, 
the Mean Squared Error (MSE) is an example of such a loss function:

( ) ( )2
1

1 i m

i i
i

, MSE x x
m

=

=

= = −∑� �L x x           (Equation 3.1.1)

In this example, m is the output dimensions (For example, in MNIST m = width 
× height × channels = 28 × 28 × 1 = 784). ix  and ix�  are the elements of x and x�  
respectively. Since the loss function is a measure of dissimilarity between the input 
and output, we're able to use alternative reconstruction loss functions such as the 
binary cross entropy or structural similarity index (SSIM).

Similar to the other neural networks, the autoencoder tries to make this error 
or loss function as small as possible during training. Figure 3.1.1 shows the 
autoencoder. The encoder is a function that compresses the input, x, into a low-
dimensional latent vector, z. This latent vector represents the important features 
of the input distribution. The decoder then tries to recover the original input from 
the latent vector in the form of x� .

Figure 3.1.1: Block diagram of an autoencoder

 Figure 3.1.2: An autoencoder with MNIST digit input and output. The latent vector is 16-dim.
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To put the autoencoder in context, x can be an MNIST digit which has a dimension of 
28 × 28 × 1 = 784. The encoder transforms the input into a low-dimensional z that can 
be a 16-dimension latent vector. The decoder will attempt to recover the input in the 
form of x�  from z. Visually, every MNIST digit x will appear similar to x� . Figure 3.1.2 
demonstrates this autoencoding process to us. We can observe that the decoded digit 
7, while not exactly the same remains close enough.

Since both encoder and decoder are non-linear functions, we can use neural 
networks to implement both. For example, in the MNIST dataset, the autoencoder 
can be implemented by MLP or CNN. The autoencoder can be trained by minimizing 
the loss function through backpropagation. Similar to other neural networks, the 
only requirement is that the loss function must be differentiable.

If we treat the input as a distribution, we can interpret the encoder as an encoder of 
distribution, ( )p |z x  and the decoder, as the decoder of distribution, ( )p |x z . The loss 
function of the autoencoder is expressed as follows:

( )log |p= − zL x           (Equation 3.1.2)

The loss function simply means that we would like to maximize the chances of 
recovering the input distribution given the latent vector distribution. If the decoder 
output distribution is assumed to be Gaussian, then the loss function boils down 
to MSE since:

( ) ( ) ( ) ( )22 2

1 11

log | log ; , log ; ,
m m m

i i i i i i
i ii

p x x x x x xσ σ α
= ==

= − = − = − −∑ ∑∏z � � �L N Nx      (Equation 3.1.3)

In this example, ( )2; ,i ix x σ�N  represents a Gaussian distribution with a mean of ix�  and 
variance of 2σ . A constant variance is assumed. The decoder output ix�  is assumed to 
be independent. While m is the output dimension.

Building autoencoders using Keras
We're now going to move onto something really exciting, building an autoencoder 
using Keras library. For simplicity, we'll be using the MNIST dataset for the first set 
of examples. The autoencoder will then generate a latent vector from the input data 
and recover the input using the decoder. The latent vector in this first example is  
16-dim.
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Firstly, we're going to implement the autoencoder by building the encoder. 
Listing 3.2.1 shows the encoder that compresses the MNIST digit into a 16-dim latent 
vector. The encoder is a stack of two Conv2D. The final stage is a Dense layer with 
16 units to generate the latent vector. Figure 3.2.1 shows the architecture model 
diagram generated by plot_model() which is the same as the text version produced 
by encoder.summary(). The shape of the output of the last Conv2D is saved to 
compute the dimensions of the decoder input layer for easy reconstruction of the 
MNIST image.

The following Listing 3.2.1, shows autoencoder-mnist-3.2.1.py. This 
is an autoencoder implementation using Keras. The latent vector is 16-dim:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.datasets import mnist
from keras.utils import plot_model
from keras import backend as K

import numpy as np
import matplotlib.pyplot as plt

# load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

# reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
# encoder/decoder number of filters per CNN layer
layer_filters = [32, 64]
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# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               activation='relu',
               strides=2,
               padding='same')(x)

# shape info needed to build decoder model 
# so we don't do hand computation
# the input to the decoder's first Conv2DTranspose 
# will have this shape
# shape is (7, 7, 64) which is processed by 
# the decoder back to (28, 28, 1)
shape = K.int_shape(x)

# generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()
plot_model(encoder, to_file='encoder.png', show_shapes=True)

# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        activation='relu',
                        strides=2,
                        padding='same')(x)
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# reconstruct the input
outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          activation='sigmoid',
                          padding='same',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)

# autoencoder = encoder + decoder
# instantiate autoencoder model
   autoencoder = Model(inputs,
                       decoder(encoder(inputs)),
                       name='autoencoder')
   autoencoder.summary()
   plot_model(autoencoder,
              to_file='autoencoder.png',
           show_shapes=True)

# Mean Square Error (MSE) loss funtion, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# train the autoencoder
autoencoder.fit(x_train,
                x_train,
                validation_data=(x_test, x_test),
                epochs=1,
                batch_size=batch_size)

# predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test)

# display the 1st 8 test input and decoded images
imgs = np.concatenate([x_test[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
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plt.title('Input: 1st 2 rows, Decoded: last 2 rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('input_and_decoded.png')
plt.show()

Figure 3.2.1: The encoder model is a made up of Conv2D(32)-Conv2D(64)-Dense(16)  
in order to generate the low dimensional latent vector

The decoder in Listing 3.2.1 decompresses the latent vector in order to recover the 
MNIST digit. The decoder input stage is a Dense layer that will accept the latent 
vector. The number of units is equal to the product of the saved Conv2D output 
dimensions from the encoder. This is done so we can easily resize the output 
of the Dense layer for Conv2DTranspose to finally recover the original MNIST 
image dimensions.

The decoder is made of a stack of three Conv2DTranspose. In our case, we're going to 
use a Transposed CNN (sometimes called deconvolution), which is more commonly 
used in decoders. We can imagine transposed CNN (Conv2DTranspose) as the 
reversed process of CNN. In a simple example, if the CNN converts an image to 
feature maps, the transposed CNN will produce an image given feature maps. Figure 
3.2.2 shows the decoder model.
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Figure 3.2.2: The decoder model is made of a Dense(16)-Conv2DTranspose(64) -Conv2DTranspose(32)-
Conv2DTranspose(1). The input is the latent vector decoded to recover the original input.

By joining the encoder and decoder together, we're able to build the autoencoder. 
Figure 3.2.3 illustrates the model diagram of the autoencoder. The tensor output 
of the encoder is also the input to a decoder which generates the output of the 
autoencoder. In this example, we'll be using the MSE loss function and Adam 
optimizer. During training, the input is the same as the output, x_train. We 
should note that in our example, there are only a few layers which are sufficient 
enough to drive the validation loss to 0.01 in one epoch. For more complex datasets, 
you may need a deeper encoder, decoder as well as more epochs of training.

Figure 3.2.3: The autoencoder model is built by joining an encoder model and  
a decoder model together. There are 178k parameters for this autoencoder.
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After training the autoencoder for one epoch with a validation loss of 0.01, 
we're able to verify if it can encode and decode the MNIST data that it has not seen 
before. Figure 3.2.4 shows us eight samples from the test data and the corresponding 
decoded images. Except for minor blurring in the images, we're able to easily 
recognize that the autoencoder is able to recover the input with good quality. 
The results will improve as we train for a larger number of epochs.

Figure 3.2.4: Prediction of the autoencoder from the test data.  
The first 2 rows are the original input test data. The last 2 rows are the predicted data.

At this point, we may be wondering how we can visualize the latent vector in space. 
A simple method for visualization is to force the autoencoder to learn the MNIST 
digits features using a 2-dim latent vector. From there, we're able to project this latent 
vector on a 2D space in order to see how the MNIST codes are distributed. By setting 
the latent_dim = 2 in autoencoder-mnist-3.2.1.py code and by using the plot_
results() to plot the MNIST digit as a function of the 2-dim latent vector, Figure 
3.2.5 and Figure 3.2.6 shows the distribution of MNIST digits as a function of latent 
codes. These figures were generated after 20 epochs of training. For convenience, 
the program is saved as autoencoder-2dim-mnist-3.2.2.py with the partial code 
shown in Listing 3.2.2.

Following is Listing 3.2.2, autoencoder-2dim-mnist-3.2.2.py, which shows the 
function for visualization of the MNIST digits distribution over 2-dim latent codes. 
The rest of the code is practically similar to Listing 3.2.1 and no longer shown here.

def plot_results(models,
                 data,
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                 batch_size=32,
                 model_name="autoencoder_2dim"):
    """Plots 2-dim latent values as color gradient
        then, plot MNIST digits as function of 2-dim latent vector

    Arguments:
        models (list): encoder and decoder models
        data (list): test data and label
        batch_size (int): prediction batch size
        model_name (string): which model is using this function
    """

    encoder, decoder = models
    x_test, y_test = data
    os.makedirs(model_name, exist_ok=True)

    filename = os.path.join(model_name, "latent_2dim.png")
    # display a 2D plot of the digit classes in the latent space
    z = encoder.predict(x_test,
                        batch_size=batch_size)
    plt.figure(figsize=(12, 10))
    plt.scatter(z[:, 0], z[:, 1], c=y_test)
    plt.colorbar()
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.savefig(filename)
    plt.show()

    filename = os.path.join(model_name, "digits_over_latent.png")
    # display a 30x30 2D manifold of the digits
    n = 30
    digit_size = 28
    figure = np.zeros((digit_size * n, digit_size * n))
    # linearly spaced coordinates corresponding to the 2D plot
    # of digit classes in the latent space
    grid_x = np.linspace(-4, 4, n)
    grid_y = np.linspace(-4, 4, n)[::-1]

    for i, yi in enumerate(grid_y):
        for j, xi in enumerate(grid_x):
            z = np.array([[xi, yi]])
            x_decoded = decoder.predict(z)
            digit = x_decoded[0].reshape(digit_size, digit_size)
            figure[i * digit_size: (i + 1) * digit_size,
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                   j * digit_size: (j + 1) * digit_size] = digit

    plt.figure(figsize=(10, 10))
    start_range = digit_size // 2
    end_range = n * digit_size + start_range + 1
    pixel_range = np.arange(start_range, end_range, digit_size)
    sample_range_x = np.round(grid_x, 1)
    sample_range_y = np.round(grid_y, 1)
    plt.xticks(pixel_range, sample_range_x)
    plt.yticks(pixel_range, sample_range_y)
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.imshow(figure, cmap='Greys_r')
    plt.savefig(filename)
    plt.show()

Figure 3.2.5: A MNIST digit distribution as a function of latent code dimensions, z[0] and z[1].  
Original color photo can be found on the book GitHub repository, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.
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Figure 3.2.6: Digits generated as the 2-dim latent vector space is navigated

In Figure 3.2.5, we'll be able to see that the latent codes for a specific digit are 
clustering on a region in space. For example, digit 0 is on the lower left quadrant, 
while digit 1 is on the upper right quadrant. Such clustering is mirrored in Figure 
3.2.6. In fact, the same figure shows the result of navigating or generating new 
digits from the latent space as shown in the Figure 3.2.5.

For example, starting from the center and varying the value of a 2-dim latent vector 
towards the lower left quadrant, shows us that the digit changes from 2 to 0. This 
is expected since from Figure 3.2.5, we're able to see that the codes for the digit 2 
clusters are near the center, and as discussed digit 0 codes cluster in the lower left 
quadrant. For Figure 3.2.6, we've only explored the regions between -4.0 and +4.0 
for each latent dimension.
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As can be seen in Figure 3.2.5, the latent code distribution is not continuous and 
ranges beyond 4.0± . Ideally, it should look like a circle where there are valid values 
everywhere. Because of this discontinuity, there are regions where if we decode the 
latent vector, hardly recognizable digits will be produced.

Denoising autoencoder (DAE)
We're now going to build an autoencoder with a practical application. Firstly, 
let's paint a picture and imagine that the MNIST digits images were corrupted by 
noise, thus making it harder for humans to read. We're able to build a Denoising 
Autoencoder (DAE) to remove the noise from these images. Figure 3.3.1 shows us 
three sets of MNIST digits. The top rows of each set (for example, MNIST digits 7, 2, 
1, 9, 0, 6, 3, 4, 9) are the original images. The middle rows show the inputs to DAE, 
which are the original images corrupted by noise. The last rows show the outputs 
of DAE:

Figure 3.3.1: Original MNIST digits (top rows),  
corrupted original images (middle rows) and denoised images (last rows)

Figure 3.3.2: The input to the denoising autoencoder is the corrupted image.  
The output is the clean or denoised image. The latent vector is assumed to be 16-dim.
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As shown in Figure 3.3.2, the denoising autoencoder has practically the same 
structure as the autoencoder for MNIST that we presented in the previous section. 
The input is defined as:

orig= noise+x x           (Equation 3.3.1)

In this formula, origx  represents the original MNIST image corrupted by noise.

The objective of the encoder is to discover how to produce the latent vector, z, that 
will enable the decoder to recover origx  by minimizing the dissimilarity loss function 
such as MSE, as shown here:

( ) ( )2
1

1,
i

i m

orig orig i
i

MSE x x
m

=

=

= = −∑� �L x x           (Equation 3.3.2)

In this example, m is the output dimensions (for example, in MNIST m = width × 
height × channels = 28 × 28 × 1 = 784). 

iorigx  and ix�  are the elements of origx  and �x , 
respectively.

To implement DAE, we're going to need to make a few changes on the autoencoder 
presented in the previous section. Firstly, the training input data should be corrupted 
MNIST digits. The training output data is the same original clean MNIST digits. This 
is like telling the autoencoder what the corrected images should be or asking it to 
figure out how to remove noise given a corrupted image. Lastly, we must validate 
the autoencoder on the corrupted MNIST test data.

The MNIST digit 7 shown on the left of Figure 3.3.2 is an actual corrupted image 
input. The one on the right is the clean image output of a trained denoising 
autoencoder.

Listing 3.3.1 shows the denoising autoencoder which has been contributed to the 
Keras GitHub repository. Using the same MNIST dataset, we're able to simulate 
corrupted images by adding random noise. The noise added is a Gaussian 
distribution with a mean, 0.5µ =  and standard deviation of 0.5σ = . Since adding 
random noise may push the pixel data into invalid values of less than 0 or greater 
than 1, the pixel values are clipped to [0.1, 1.0] range.

Everything else will remain practically the same as the autoencoder from the 
previous section. We'll use the same MSE loss function and Adam optimizer as the 
autoencoder. However, the number of epoch for training has increased to 10. This 
is to allow sufficient parameter optimization.
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Figure 3.3.1 shows actual validation data with both the corrupted and denoised test 
MNIST digits. We're even able to see that humans will find it difficult to read the 
corrupted MNIST digits. Figure 3.3.3 shows a certain level of robustness of DAE as 
the level of noise is increased from 0.5σ =  to 0.75σ =  and . At 0.75σ =
, DAE is still able to recover the original images. However, at 1.0σ = , a few digits 
such as 4 and 5 in the second and third sets can no longer be recovered correctly.

Figure 3.3.3: Performance of denoising autoencoder as the noise level is increased

As seen in Listing 3.3.1, denoising-autoencoder-mnist-3.3.1.py shows 
us a Denoising autoencoder:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

np.random.seed(1337)

# load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

# reshape to (28, 28, 1) and normalize input images
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image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# generate corrupted MNIST images by adding noise with normal dist
# centered at 0.5 and std=0.5
noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_noisy = x_train + noise
noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_noisy = x_test + noise

# adding noise may exceed normalized pixel values>1.0 or <0.0
# clip pixel values >1.0 to 1.0 and <0.0 to 0.0
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]

# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=2,
               activation='relu',
               padding='same')(x)

# shape info needed to build decoder model 
# so we don't do hand computation
# the input to the decoder's first Conv2DTranspose 
# will have this shape
# shape is (7, 7, 64) which can be processed by 
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# the decoder back to (28, 28, 1)
shape = K.int_shape(x)

# generate the latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        strides=2,
                        activation='relu',
                        padding='same')(x)

# reconstruct the denoised input
outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          padding='same',
                          activation='sigmoid',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)), 
name='autoencoder')
autoencoder.summary()
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# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# train the autoencoder
autoencoder.fit(x_train_noisy,
                x_train,
                validation_data=(x_test_noisy, x_test),
                epochs=10,
                batch_size=batch_size)

# predict the autoencoder output from corrupted test images
x_decoded = autoencoder.predict(x_test_noisy)

# 3 sets of images with 9 MNIST digits
# 1st rows - original images
# 2nd rows - images corrupted by noise
# 3rd rows - denoised images
rows, cols = 3, 9
num = rows * cols
imgs = np.concatenate([x_test[:num], x_test_noisy[:num], x_
decoded[:num]])
imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
imgs = np.vstack(np.split(imgs, rows, axis=1))
imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
imgs = (imgs * 255).astype(np.uint8)
plt.figure()
plt.axis('off')
plt.title('Original images: top rows, '
          'Corrupted Input: middle rows, '
          'Denoised Input:  third rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
Image.fromarray(imgs).save('corrupted_and_denoised.png')
plt.show()

Automatic colorization autoencoder
We're now going to work on another practical application of autoencoders. In this 
case, we're going to imagine that we have a grayscale photo and that we want to 
build a tool that will automatically add color to them. We would like to replicate the 
human abilities in identifying that the sea and sky are blue, the grass field and trees 
are green, while clouds are white, and so on. 
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As shown in Figure 3.4.1, if we are given a grayscale photo of a rice field on the 
foreground, a volcano in the background and sky on top, we're able to add the 
appropriate colors.

Figure 3.4.1: Adding color to a grayscale photo of the Mayon Volcano. A colorization network should replicate 
human abilities by adding color to a grayscale photo. Left photo is grayscale. The right photo is color. Original 

color photo can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-
Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.

A simple automatic colorization algorithm seems like a suitable problem for 
autoencoders. If we can train the autoencoder with a sufficient number of grayscale 
photos as input and the corresponding colored photos as output, it could possibly 
discover the hidden structure on properly applying colors. Roughly, it is the reverse 
process of denoising. The question is, can an autoencoder add color (good noise) 
to the original grayscale image?

Listing 3.4.1 shows the colorization autoencoder network. The colorization 
autoencoder network is a modified version of denoising autoencoder that we 
used for the MNIST dataset. Firstly, we need a dataset of grayscale to colored 
photos. The CIFAR10 database, which we have used before, has 50,000 training 
and 10,000 testing 32 × 32 RGB photos that can be converted to grayscale. As shown 
in the following listing, we're able to use the rgb2gray() function to apply weights 
on R, G, and B components to convert from color to grayscale.

Listing 3.4.1, colorization-autoencoder-cifar10-3.4.1.py, shows us 
a colorization autoencoder using the CIFAR10 dataset:

from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
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from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
from keras.datasets import cifar10
from keras.utils import plot_model
from keras import backend as K

import numpy as np
import matplotlib.pyplot as plt
import os

# convert from color image (RGB) to grayscale
# source: opencv.org
# grayscale = 0.299*red + 0.587*green + 0.114*blue
def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

# load the CIFAR10 data
(x_train, _), (x_test, _) = cifar10.load_data()

# input image dimensions
# we assume data format "channels_last"
img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
channels = x_train.shape[3]

# create saved_images folder
imgs_dir = 'saved_images'
save_dir = os.path.join(os.getcwd(), imgs_dir)
if not os.path.isdir(save_dir):
        os.makedirs(save_dir)

# display the 1st 100 input images (color and gray)
imgs = x_test[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test color images (Ground Truth)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/test_color.png' % imgs_dir)
plt.show()
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# convert color train and test images to gray
x_train_gray = rgb2gray(x_train)
x_test_gray = rgb2gray(x_test)

# display grayscale version of test images
imgs = x_test_gray[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test gray images (Input)')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('%s/test_gray.png' % imgs_dir)
plt.show()

# normalize output train and test color images
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# normalize input train and test grayscale images
x_train_gray = x_train_gray.astype('float32') / 255
x_test_gray = x_test_gray.astype('float32') / 255

# reshape images to row x col x channel for CNN output/validation
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 
channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)

# reshape images to row x col x channel for CNN input
x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows, 
img_cols, 1)
x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows, img_
cols, 1)

# network parameters
input_shape = (img_rows, img_cols, 1)
batch_size = 32
kernel_size = 3
latent_dim = 256
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [64, 128, 256]
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# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(64)-Conv2D(128)-Conv2D(256)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=2,
               activation='relu',
               padding='same')(x)

# shape info needed to build decoder model 
# so we don't do hand computation
# the input to the decoder's first Conv2DTranspose 
# will have this shape
# shape is (4, 4, 256) which is processed 
# by the decoder to (32, 32, 3)
shape = K.int_shape(x)

# generate a latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
x = Dense(shape[1]*shape[2]*shape[3])(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(256)-Conv2DTranspose(128)-
# Conv2DTranspose(64)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        strides=2,
                        activation='relu',
                        padding='same')(x)

outputs = Conv2DTranspose(filters=channels,
                          kernel_size=kernel_size,
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                          activation='sigmoid',
                          padding='same',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)), 
name='autoencoder')
autoencoder.summary()

# prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'colorized_ae_model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)

# reduce learning rate by sqrt(0.1) if the loss does not improve in 5 
epochs
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
                               cooldown=0,
                               patience=5,
                               verbose=1,
                               min_lr=0.5e-6)

# save weights for future use 
# (e.g. reload parameters w/o training)
checkpoint = ModelCheckpoint(filepath=filepath,
                             monitor='val_loss',
                             verbose=1,
                             save_best_only=True)

# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# called every epoch
callbacks = clr_reducer, checkpoint]

# train the autoencoder
autoencoder.fit(x_train_gray,
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                x_train,
                validation_data=(x_test_gray, x_test),
                epochs=30,
                batch_size=batch_size,
                callbacks=callbacks)

# predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test_gray)

# display the 1st 100 colorized images
imgs = x_decoded[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Colorized test images (Predicted)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/colorized.png' % imgs_dir)
plt.show()

We've increased the capacity of the autoencoder by adding one more block of 
convolution and transposed convolution. We've also doubled the number of filters 
at each CNN block. The latent vector is now 256-dim in order to increase the number 
of salient properties it can represent as discussed in the autoencoder section. Finally, 
the output filter size has increased to three, or equal to the number of channels in 
RGB of the expected colored output.

The colorization autoencoder is now trained with the grayscale as inputs and 
original RGB images as outputs. The training will take more epochs and uses the 
learning rate reducer to scale down the learning rate when the validation loss is not 
improving. This can be easily done by telling the callbacks argument in the Keras 
fit() function to call the lr_reducer() function.

Figure 3.4.2 demonstrates colorization of grayscale images from the test dataset of 
CIFAR10. Figure 3.4.3 compares the ground truth with the colorization autoencoder 
prediction. The autoencoder performs an acceptable colorization job. The sea or sky 
is predicted to be blue, animals have varying brown shades, the cloud is white, and 
so on. 



Autoencoders

[ 96 ]

There are some noticeable wrong predictions like red vehicles have become blue 
or blue vehicles become red, and the occasional green field has been mistaken 
as blue skies, and dark or golden skies are converted to blue skies.

Figure 3.4.2: Automatic grayscale to color image conversion using the autoencoder. CIFAR10 test 
grayscale input images (left) and predicted color images (right). Original color photo can be found on the 

book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/
master/chapter3-autoencoders/README.md.

Figure 3.4.3: Side by side comparison of ground truth color images and predicted colorized images. Original 
color photos can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md.
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Conclusion
In this chapter, we've been introduced to autoencoders, which are neural 
networks that compress input data into low-dimensional codes in order to 
efficiently perform structural transformations such as denoising and colorization. 
We've laid the foundations to the more advanced topics of GANs and VAEs, that 
we will introduce in later chapters, while still exploring how autoencoders can 
utilize Keras. We've demonstrated how to implement an autoencoder from two 
building block models, both encoder and decoder. We've also learned how the 
extraction of a hidden structure of input distribution is one of the common tasks 
in AI.

Once the latent code has been uncovered, there are many structural operations 
that can be performed on the original input distribution. In order to gain a better 
understanding of the input distribution, the hidden structure in the form of the 
latent vector can be visualized using low-level embedding similar to what we did 
in this chapter or through more sophisticated dimensionality reduction techniques 
such t-SNE or PCA.

Apart from denoising and colorization, autoencoders are used in converting 
input distribution to low-dimensional latent codes that can be further processed 
for other tasks such as segmentation, detection, tracking, reconstruction, visual 
understanding, and so on. In Chapter 8, Variational Autoencoders (VAEs), we will 
discuss VAEs which are structurally the same as autoencoder but differ by having an 
interpretable latent code that can produce a continuous latent codes projection. In the 
next chapter, we will embark on one of the most important recent breakthroughs in 
AI, the introduction of GANs where we will learn of the core strengths of GANs and 
their ability to synthesize data or signals that look real.
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Generative Adversarial  
Networks (GANs)

In this chapter, we'll be investigating Generative Adversarial Networks (GANs) 
[1], the first of three artificial intelligence algorithms that we'll be looking at. GANs 
belong to the family of generative models. However, unlike autoencoders, generative 
models are able to create new and meaningful outputs given arbitrary encodings. 

In this chapter, the working principles of GANs will be discussed. We'll also review 
the implementations of several early GANs within Keras. While later on the chapter, 
we'll be demonstrating the techniques needed to achieve stable training. The scope 
of this chapter covers two popular examples of GAN implementations, Deep 
Convolutional GAN (DCGAN) [2] and Conditional GAN (CGAN) [3].

In summary, the goal of this chapter is to:

•	 Introduce the principles of GANs
•	 How to implement GANs such as DCGAN and CGAN in Keras

An overview of GANs
Before we move into the more advanced concepts of GANs, let's start by going 
over GANs, and introducing the underlying concepts of them. GANs are very 
powerful; this simple statement is proven by the fact that they can generate new 
celebrity faces that are not of real people by performing latent space interpolations. 
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A great example of the advanced features of GANs [4] can be seen with this 
YouTube video (https://youtu.be/G06dEcZ-QTg). The video, which shows how 
GANs can be utilized to produce realistic faces just shows how powerful they can 
be. This topic is much more advanced than anything we've looked at before in this 
book. For example, the above video is something that can't be accomplished easily 
by autoencoders, which we covered in Chapter 3, Autoencoders.

GANs are able to learn how to model the input distribution by training two 
competing (and cooperating) networks referred to as generator and discriminator 
(sometimes known as critic). The role of the generator is to keep on figuring out 
how to generate fake data or signals (this includes, audio and images) that can 
fool the discriminator. Meanwhile, the discriminator is trained to distinguish 
between fake and real signals. As the training progresses, the discriminator will 
no longer be able to see the difference between the synthetically generated data 
and the real ones. From there, the discriminator can be discarded, and the generator 
can now be used to create new realistic signals that have never been observed before.

The underlying concept of GANs is straightforward. However, one thing 
we'll find is that the most challenging aspect is how do we achieve stable training 
of the generator-discriminator network? There must be a healthy competition 
between the generator and discriminator in order for both networks to be able 
to learn simultaneously. Since the loss function is computed from the output 
of the discriminator, its parameters update is fast. When the discriminator 
converges faster, the generator no longer receives sufficient gradient updates for 
its parameters and fails to converge. Other than being hard to train, GANs can also 
suffer from either a partial or total modal collapse, a situation wherein the generator 
is producing almost similar outputs for different latent encodings.

Principles of GANs
As shown in Figure 4.1.1 a GAN is analogous to a counterfeiter (generator) - police 
(discriminator) scenario. At the academy, the police are taught how to determine if 
a dollar bill is either genuine or fake. Samples of real dollar bills from the bank and 
fake money from the counterfeiter are used to train the police. However, from time 
to time, the counterfeiter will attempt to pretend that he printed real dollar bills. 
Initially, the police will not be fooled and will tell the counterfeiter why the money 
is fake. Taking into consideration this feedback, the counterfeiter hones his skills 
again and attempts to produce new fake dollar bills. As expected the police will 
be able to both spot the money as fake and justify why the dollar bills are fake. 

https://youtu.be/G06dEcZ-QTg
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Figure 4.1.1: The generator and discriminator of GANs are analogous to the counterfeiter and the police. 
The goal of the counterfeiter is to fool the police into believing that the dollar bill is real.

This scenario continues indefinitely but eventually, a time will come when 
the counterfeiter has mastered his skills in making fake dollar bills that are 
indistinguishable from real ones. The counterfeiter can then infinitely print 
dollar bills without getting caught by the police as they are no longer indefinable 
as counterfeit.

Figure 4.1.2: A GAN is made up of two networks, a generator, and a discriminator.  
The discriminator is trained to distinguish between real and fake signals or data.  

The generator's job is to generate fake signals or data that can eventually fool the discriminator.
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As shown in Figure 4.1.2, a GAN is made up of two networks, a generator, and 
a discriminator. The input to the generator is noise, and the output is a synthesized 
signal. Meanwhile, the discriminator's input will be either a real or a synthesized 
signal. Genuine signals come from the true sampled data, while the fake signals 
come from the generator. All of the valid signals are labeled 1.0 (that is, 100% 
probability of being real) while all the synthesized signals are labeled 0.0 (that 
is, 0% probability of being real). Since the labeling process is automated, GANs 
are still considered part of the unsupervised learning approach in deep learning.

The objective of the discriminator is to learn from this supplied dataset on how 
to distinguish real signals from fake signals. During this part of GAN training, 
only the discriminator parameters will be updated. Like a typical binary classifier, 
the discriminator is trained to predict on a range of 0.0 to 1.0 in confidence values 
on how close a given input signal is to the true one. However, this is only half 
of the story.

At regular intervals, the generator will pretend that its output is a genuine signal 
and will ask the GAN to label it as 1.0. When the fake signal is then presented 
to the discriminator, naturally it will be classified as fake with a label close to 0.0. 
The optimizer computes the generator parameter updates based on the presented 
label (that is, 1.0). It also takes its own prediction into account when training 
on this new data. In other words, the discriminator has some doubt about its 
prediction, and so, GANs takes that into consideration. This time, GANs will let 
the gradients backpropagate from the last layer of the discriminator down to the 
first layer of the generator. However, in most practices, during this phase of training, 
the discriminator parameters are temporarily frozen. The generator will use the 
gradients to update its parameters and improve its ability to synthesize fake signals.

Overall, the whole process is akin to two networks competing with one another 
while still cooperating at the same time. When the GAN training converges, the 
end result is a generator that can synthesize signals. The discriminator thinks these 
synthesized signals are real or with a label near 1.0, which means the discriminator 
can then be discarded. The generator part will be useful in producing meaningful 
outputs from arbitrary noise inputs.
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Figure 4.1.3: Training the discriminator is similar to training a binary classifier network using binary  
cross-entropy loss. The fake data is supplied by the generator while real data is from true samples.

As shown in the preceding figure, the discriminator can be trained by minimizing 
the loss function in the following equation:

( ) ( ) ( )( ) ( ) ( )( )( )~, log log 1
data

D G D
x p zx zθ θ =− − −E EL D D G           (Equation 4.1.1)

The equation is just the standard binary cross-entropy cost function. The loss is 
the negative sum of the expectation of correctly identifying real data, ( )xD , and 
the expectation of 1.0 minus correctly identifying synthetic data, ( )( )1 z−D G . The 
log does not change the location of the local minima. Two mini-batches of data are 
supplied to the discriminator during training:

1.	 x , real from sampled data (that is, ~ datax p ) with label 1.0
2.	 ( )x z′ =G , fake data from the generator with label 0.0

In order to minimize the loss function, the discriminator parameters, ( )Dθ , will be 
updated through backpropagation by correctly identifying the genuine data, ( )xD
, and synthetic data, ( )( )1 z−D G . Correctly identifying real data is equivalent 
to ( ) 1.0x →D  while correctly classifying fake data is the same as ( )( ) 0.0z →D G  
or ( )( )( )1 1.0z− →D G . In this equation, z  is the arbitrary encoding or noise 
vector that is used by the generator to synthesize new signals. Both contribute 
to minimizing the loss function.

To train the generator, GAN considers the total of the discriminator and generator 
losses as a zero-sum game. The generator loss function is simply the negative of the 
discriminator loss function:

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,G G D D G Dθ θ θ θ=−L L           (Equation 4.1.2)
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This can then be rewritten more aptly as a value function:

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,G G D D G Dθ θ θ θ=−V L           (Equation 4.1.3)

From the perspective of the generator, Equation 4.1.3 should be minimized. From 
the point of view of the discriminator, the value function should be maximized. 
Therefore, the generator training criterion can be written as a minimax problem:

( )
( ) ( )

( ) ( ) ( )( )minmin ,
G D

G D G Darg
θ θ

θ θ θ∗ = V           (Equation 4.1.4)

Occasionally, we'll try to fool the discriminator by pretending that the synthetic 
data is real with label 1.0. By maximizing with respect to ( )Dθ , the optimizer sends 
gradient updates to the discriminator parameters to consider this synthetic data as 
real. At the same time, by minimizing with respect to ( )Gθ , the optimizer will train 
the generator's parameters on how to trick the discriminator. However, in practice, 
the discriminator is confident in its prediction in classifying the synthetic data as fake 
and will not update its parameters. Furthermore, the gradient updates are small and 
have diminished significantly as they propagate to the generator layers. As a result, 
the generator fails to converge:

Figure 4.1.4: Training the generator is like training a network using a binary cross-entropy loss function.  
The fake data from the generator is presented as genuine.

The solution is to reformulate the loss function of the generator in the form:

( ) ( ) ( )( ) ( )( ), logG G D
z zθ θ =−EL D G           (Equation 4.1.5)
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The loss function simply maximizes the chance of the discriminator into believing 
that the synthetic data is real by training the generator. The new formulation is no 
longer zero-sum and is purely heuristics-driven. Figure 4.1.4 shows the generator 
during training. In this figure, the generator parameters are only updated when 
the whole adversarial network is trained. This is because the gradients are 
passed down from the discriminator to the generator. However, in practice, the 
discriminator weights are only temporarily frozen during adversarial training.

In deep learning, both the generator and discriminator can be implemented using 
a suitable neural network architecture. If the data or signal is an image, both the 
generator and discriminator networks will use a CNN. For single-dimensional 
sequences like in NLP, both networks are usually recurrent (RNN, LSTM or GRU).

GAN implementation in Keras
In the previous section, we learned that the principles behind GANs are 
straightforward. We also learned how GANs could be implemented by familiar 
network layers such as CNNs and RNNs. What differentiates GANs from other 
networks is they are notoriously difficult to train. Something as simple as a minor 
change in the layers can drive the network to training instability.

In this section, we'll examine one of the early successful implementations 
of GANs using deep CNNs. It is called DCGAN [3].

Figure 4.2.1 shows DCGAN that is used to generate fake MNIST images. 
DCGAN recommends the following design principles:

•	 Use of strides > 1 convolution instead of MaxPooling2D or UpSampling2D. 
With strides > 1, the CNN learns how to resize the feature maps.

•	 Avoid using Dense layers. Use CNN in all layers. The Dense layer is utilized 
only as the first layer of the generator to accept the z-vector. The output of the 
Dense layer is resized and becomes the input of the succeeding CNN layers.

•	 Use of Batch Normalization (BN) to stabilize learning by normalizing 
the input to each layer to have zero mean and unit variance. No BN 
in the generator output layer and discriminator input layer. In the 
implementation example to be presented here, no batch normalization 
is used in the discriminator.

•	 Rectified Linear Unit (ReLU) is used in all layers of the generator except in 
the output layer where the tanh activation is utilized. In the implementation 
example to be presented here, sigmoid is used instead of tanh in the output 
of the generator since it generally results in a more stable training for 
MNIST digits.
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•	 Use of Leaky ReLU in all layers of the discriminator. Unlike ReLU, instead of 
zeroing out all outputs when the input is less than zero, Leaky ReLU generates 
a small gradient equal to alpha × input. In the following example, alpha = 0.2.

Figure 4.2.1: A DCGAN model

The generator learns to generate fake images from 100-dim input vectors ([-1.0, 1.0] 
range 100-dim random noise with uniform distribution). The discriminator classifies 
real from fake images but inadvertently coaches the generator how to generate real 
images when the adversarial network is trained. The kernel size used in our DCGAN 
implementation is 5, this is to allow it to increase the coverage and expressive power 
of the convolution.

The generator accepts the 100-dim z-vector generated by a uniform distribution 
with a range of -1.0 to 1.0. The first layer of the generator is a 7 × 7 ×128 = 6,272 - 
unit Dense layer. The number of units is computed based on the intended ultimate 
dimensions of the output image (28 × 28 × 1, 28 is a multiple of 7) and the number 
of filters of the first Conv2DTranspose, which is equal to 128. We can imagine 
transposed CNNs (Conv2DTranspose) as the reversed process of CNN. In a 
simple example, if a CNN converts an image to feature maps, a transposed CNN 
will produce an image given feature maps. Hence, transposed CNNs were used 
in the decoder in the previous chapter and here on generators.
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After undergoing two Conv2DTranspose with strides = 2, the feature maps 
will have a size of 28 × 28 × number of filters. Each Conv2DTranspose is preceded 
by batch normalization and ReLU. The final layer has sigmoid activation that 
generates the 28 × 28 × 1 fake MNIST images. Each pixel is normalized to 
[0.0, 1.0] corresponding to [0, 255] grayscale levels. Following listing shows the 
implementation of the generator network in Keras. A function is defined to build 
the generator model. Due to the length of the entire code, we will limit the listing 
to the particular lines being discussed.

The complete code is available on GitHub: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

Listing 4.2.1, dcgan-mnist-4.2.1.py shows us the generator network builder 
function for DCGAN:

def build_generator(inputs, image_size):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    # Arguments
        inputs (Layer): Input layer of the generator (the z-vector)
        image_size: Target size of one side (assuming square image)

    # Returns
        Model: Generator Model
    """

    image_resize = image_size // 4
    # network parameters 
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras


Generative Adversarial Networks (GANs)

[ 108 ]

        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    x = Activation('sigmoid')(x)
    generator = Model(inputs, x, name='generator')
    return generator

The discriminator is similar to many CNN-based classifiers. The input is a 28 × 28 × 1 
MNIST image that is classified as either real (1.0) or fake (0.0). There are four CNN 
layers. Except for the last convolution, each Conv2D uses strides = 2 to down 
sample the feature maps by two. Each Conv2D is then preceded by a Leaky ReLU 
layer. The final filter size is 256, while the initial filter size is 32 and doubles every 
convolution layer. The final filter size of 128 also works. However, we'll find that 
the generated images look better with 256. The final output layer is flattened, and 
a single unit Dense layer generates the prediction between 0.0 to 1.0 after scaling 
by the sigmoid activation layer. The output is modeled as a Bernoulli distribution. 
Hence, the binary cross-entropy loss function is used.

After building the generator and discriminator models, the adversarial model is 
made by concatenating the generator and discriminator networks. Both discriminator 
and adversarial networks use the RMSprop optimizer. The learning rate for the 
discriminator is 2e-4 while for the adversarial network, it is 1e-4. RMSprop decay 
rates of 6e-8 for discriminator and 3e-8 for the adversarial network are applied. 
Setting the learning rate of the adversarial equal to half of the discriminator 
will result in a more stable training. We'll recall from Figure 4.1.3 and 4.1.4, that 
the GAN training has two parts: discriminator training and generator training, 
which is adversarial training, with discriminator weights frozen.

Listing 4.2.2 shows the implementation of the discriminator in Keras. A function 
is defined to build the discriminator model. In Listing 4.2.3, we'll illustrate how to 
build GAN models. Firstly, the discriminator model is built and following on from 
that the generator model is instantiated. The adversarial model is just the generator 
and the discriminator put together. Across many GANs, the batch size of 64 appears 
to be the most common. The network parameters are shown in Listing 4.2.3.
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As can be seen in Listing 4.2.1 and 4.2.2, the DCGAN models are straightforward. 
What makes it difficult to build is small changes in the network design can easily 
break the training convergence. For example, if batch normalization is used in the 
discriminator or if strides = 2 in the generator is transferred to the latter CNN 
layers, DCGAN will fail to converge.

Listing 4.2.2, dcgan-mnist-4.2.1.py shows us the discriminator network builder 
function for DCGAN:

def build_discriminator(inputs):
    """Build a Discriminator Model

    Stack of LeakyReLU-Conv2D to discriminate real from fake.
    The network does not converge with BN so it is not used here
    unlike in [1] or original paper.

    # Arguments
        inputs (Layer): Input layer of the discriminator (the image)

    # Returns
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    x = Dense(1)(x)
    x = Activation('sigmoid')(x)
    discriminator = Model(inputs, x, name='discriminator')
    return discriminator
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Listing 4.2.3, dcgan-mnist-4.2.1.py: Function to build DCGAN models and call 
the training routine:

def build_and_train_models():
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "dcgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = build_discriminator(inputs)
    # [1] or original paper uses Adam, 
    # but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    discriminator.compile(loss='binary_crossentropy',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = build_generator(inputs, image_size)
    generator.summary()

    # build adversarial model
    optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
    # freeze the weights of discriminator 
    # during adversarial training
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    discriminator.trainable = False
    # adversarial = generator + discriminator
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    adversarial.compile(loss='binary_crossentropy',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    train(models, x_train, params)

Listing 4.2.4 shows the function dedicated to training the discriminator and 
adversarial networks. Due to custom training, the usual fit() function is not going 
to be used. Instead, train_on_batch() is called up to run a single gradient update 
for the given batch of data. The generator is then trained via an adversarial network. 
The training first randomly picks a batch of real images from the dataset. This is 
labeled as real (1.0). Then a batch of fake images will be generated by the generator. 
This is labeled as fake (0.0). The two batches are concatenated and are used to train 
the discriminator. 

After this is completed, a new batch of fake images will be generated by the 
generator and labeled as real (1.0). This batch will be used to train the adversarial 
network. The two networks are trained alternately for about 40,000 steps. At regular 
intervals, the generated MNIST digits based on a certain noise vector are saved on 
the filesystem. At the last training step, the network has converged. The generator 
model is also saved on a file so we can easily reuse the trained model for future 
MNIST digits generation. However, only the generator model is saved since that 
is the useful part of GANs in the generation of new MNIST digits. For example, 
we can generate new and random MNIST digits by executing:

python3 dcgan-mnist-4.2.1.py --generator=dcgan_mnist.h5

Listing 4.2.4, dcgan-mnist-4.2.1.py shows us the function to train the 
discriminator and adversarial networks:

def train(models, x_train, params):
    """Train the Discriminator and Adversarial Networks

    Alternately train Discriminaor and Adversarial networks by batch.
    Discriminator is trained first with properly real and fake images.
    Adversarial is trained next with fake images pretending to be real
    Generate sample images per save_interval.
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    # Arguments
        models (list): Generator, Discriminator, Adversarial models
        x_train (tensor): Train images
        params (list) : Networks parameters

    """
    # the GAN models
    generator, discriminator, adversarial = models
    # network parameters
    batch_size, latent_size, train_steps, model_name = params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output evolves 
    # during training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
    # number of elements in train dataset
    train_size = x_train.shape[0]
    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0, train_size, size=batch_
size)
        real_images = x_train[rand_indexes]
        # generate fake images from noise using generator 
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
        # generate fake images
        fake_images = generator.predict(noise)
        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0.0
        # train discriminator network, log the loss and accuracy
        loss, acc = discriminator.train_on_batch(x, y)
        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0
        # since the discriminator weights are frozen in adversarial 
network
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        # only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
        # label fake images as real or 1.0
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input of the 
adversarial
        # for classification
        # log the loss and accuracy
        loss, acc = adversarial.train_on_batch(noise, y)
        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False

            # plot generator images on a periodic basis
            plot_images(generator,
                        noise_input=noise_input,
                        show=show,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for future MNIST digit 
generation
    generator.save(model_name + ".h5")

Figure 4.2.1 shows the evolution of fake images from the generator as a function 
of training steps. At 5,000 steps, the generator is already producing recognizable 
images. It's very much like having an agent that knows how to draw digits. It's worth 
noting that some digits change from one recognizable form (for example, 8 on the 2nd 
column of the last row) to another (for example, 0). When the training converges, the 
discriminator loss reaches near 0.5 while the adversarial loss approaches near 1.0 as 
follows:

39997: [discriminator loss: 0.423329, acc: 0.796875] [adversarial loss: 
0.819355, acc: 0.484375]

39998: [discriminator loss: 0.471747, acc: 0.773438] [adversarial loss: 
1.570030, acc: 0.203125]
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39999: [discriminator loss: 0.532917, acc: 0.742188] [adversarial loss: 
0.824350, acc: 0.453125]

Figure 4.2.2: The fake images generated by the DCGAN generator at different training steps

Conditional GAN
In the previous section, the fake images generated by the DCGAN are random. 
There is no control over which specific digits will be produced by the generator. There 
is no mechanism for how to request a particular digit from the generator. This problem 
can be addressed by a variation of GAN called Conditional GAN (CGAN) [4].

Using the same GAN, a condition is imposed on both the generator and 
discriminator inputs. The condition is in the form of a one-hot vector version 
of the digit. This is associated with the image to produce (generator) or classified 
as real or fake (discriminator). The CGAN model is shown in Figure 4.3.1.
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CGAN is similar to DCGAN except for the additional one-hot vector input. For the 
generator, the one-hot label is concatenated with the latent vector before the Dense 
layer. For the discriminator, a new Dense layer is added. The new layer is used to 
process the one-hot vector and reshape it so that it is suitable for concatenation to 
the other input of the succeeding CNN layer:

Figure 4.3.1: The CGAN model is similar to DCGAN except for the one-hot vector, which is used to condition 
the generator and discriminator outputs
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The generator learns to generate fake images from a 100-dim input vector and 
a specified digit. The discriminator classifies real from fake images based on real 
and fake images and their corresponding labels.

The basis of CGAN is still the same as the original GAN principle except that 
the discriminator and generator inputs are conditioned on one-hot labels, y. 
By incorporating this condition in Equations 4.1.1 and 4.1.5, the loss functions for 
the discriminator and generator are shown in Equations 4.3.1 and 4.3.2 respectively.

Given Figure 4.3.2, it may be more appropriate to write the loss functions as:

( ) ( ) ( )( ) ( ) ( )( )( )~, log | log 1 | |
data

D G D
x p zx y z y yθ θ ′ ′=− − −E EL D D G

and 
( ) ( ) ( )( ) ( )( ), log | |G G D

z z y yθ θ ′ ′=−EL D G
.

( ) ( ) ( )( ) ( ) ( )( )( )~, log | log 1 |
data

D G D
x p zx y z yθ θ ′=− − −E EL D D G           (Equation 4.3.1)

( ) ( ) ( )( ) ( )( ), log |G G D
z D z yθ θ ′=−EL G           (Equation 4.3.2)

The new loss function of the discriminator aims to minimize the error of predicting 
real images coming from the dataset and fake images coming from the generator 
given their one-hot labels. Figure 4.3.2 shows how to train the discriminator.

Figure 4.3.2: Training the CGAN discriminator is similar to training the GAN discriminator.  
The only difference is both the generated fake and the dataset's real images are conditioned  

with their corresponding one-hot labels.
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The new loss function of the generator minimizes the correct prediction of the 
discriminator on fake images conditioned on the specified one-hot labels. The 
generator learns how to generate the specific MNIST digit given its one-hot 
vector that can fool the discriminator. The following figure shows how to train 
the generator:

Figure 4.3.3: Training the CGAN generator through the adversarial network is similar to training 
GAN generator. The only difference is the generated fake images are conditioned with one-hot labels.

Following listing highlights the minor changes needed in the discriminator model. 
The code processes the one-hot vector using a Dense layer and concatenates it with the 
image input. The Model instance is modified for the image and one-hot vector inputs.

Listing 4.3.1, cgan-mnist-4.3.1.py shows us the CGAN discriminator. In highlight 
are the changes made in DCGAN.

def build_discriminator(inputs, y_labels, image_size):
    """Build a Discriminator Model

    Inputs are concatenated after Dense layer.
    Stack of LeakyReLU-Conv2D to discriminate real from fake.
    The network does not converge with BN so it is not used here
    unlike in DCGAN paper.

    # Arguments
        inputs (Layer): Input layer of the discriminator (the image)
        y_labels (Layer): Input layer for one-hot vector to condition
            the inputs
        image_size: Target size of one side (assuming square image)
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    # Returns
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs

    y = Dense(image_size * image_size)(y_labels)
    y = Reshape((image_size, image_size, 1))(y)
    x = concatenate([x, y])

    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    x = Dense(1)(x)
    x = Activation('sigmoid')(x)
    # input is conditioned by y_labels
    discriminator = Model([inputs, y_labels], 
                                   x,
                                   name='discriminator')
    return discriminator

Following listing highlights the code changes to incorporate the conditioning one-
hot labels in the generator builder function. The Model instance is modified for the 
z-vector and one-hot vector inputs.

Listing 4.3.2, cgan-mnist-4.3.1.py shows us the CGAN generator. In highlight 
are the changes made in DCGAN:

def build_generator(inputs, y_labels, image_size):
    """Build a Generator Model
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    Inputs are concatenated before Dense layer.
    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in orig DCGAN.
    Sigmoid converges easily.

    # Arguments
        inputs (Layer): Input layer of the generator (the z-vector)
        y_labels (Layer): Input layer for one-hot vector to condition
            the inputs
        image_size: Target size of one side (assuming square image)

    # Returns
        Model: Generator Model
    """
    image_resize = image_size // 4
    # network parameters
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    x = concatenate([inputs, y_labels], axis=1)
    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    x = Activation('sigmoid')(x)
    # input is conditioned by y_labels
    generator = Model([inputs, y_labels], x, name='generator')
    return generator
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Listing 4.3.3 highlights the changes made in the train() function to accommodate 
the conditioning one-hot vector for the discriminator and the generator. The CGAN 
discriminator is firstly trained with one batch of real and fake data conditioned 
on their respective one-hot labels. Then, the generator parameters are updated 
by training the adversarial network given one-hot label conditioned fake data 
pretending to be real. Similar to DCGAN, the discriminator weights are frozen 
during adversarial training.

Listing 4.3.3, cgan-mnist-4.3.1.py shows us the CGAN training. In highlight 
are the changes made in DCGAN:

def train(models, data, params):
    """Train the Discriminator and Adversarial Networks

    Alternately train Discriminator and Adversarial networks by batch.
    Discriminator is trained first with properly labelled real and 
fake images.
    Adversarial is trained next with fake images pretending to be 
real.
    Discriminator inputs are conditioned by train labels for real 
images,
    and random labels for fake images.
    Adversarial inputs are conditioned by random labels.
    Generate sample images per save_interval.

    # Arguments
        models (list): Generator, Discriminator, Adversarial models
        data (list): x_train, y_train data
        params (list): Network parameters

    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name = 
params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output evolves during 
training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
    # one-hot label the noise will be conditioned to
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    noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    # number of elements in train dataset
    train_size = x_train.shape[0]

    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_class, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0, train_size,  
size=batch_size)
        real_images = x_train[rand_indexes]
        # corresponding one-hot labels of real images
        real_labels = y_train[rand_indexes]
        # generate fake images from noise using generator
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size,  
latent_size])
        # assign random one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]

        # generate fake images conditioned on fake labels
        fake_images = generator.predict([noise, fake_labels])
        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        # real + fake one-hot labels = 1 batch of train one-hot labels
        y_labels = np.concatenate((real_labels, fake_labels))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0.0
        # train discriminator network, log the loss and accuracy
        loss, acc = discriminator.train_on_batch([x, y_labels], y)
        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

        # train the adversarial network for 1 batch
        # 1 batch of fake images conditioned on fake 1-hot labels 
w/ label=1.0
        # since the discriminator weights are frozen in adversarial 
network
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        # only the generator is trained
        # generate noise using uniform distribution        
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size,  
latent_size])
        # assign random one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice 
(num_labels,batch_size)]
        # label fake images as real or 1.0
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input of the 
adversarial
        # for classification
        # log the loss and accuracy
        loss, acc = adversarial.train_on_batch([noise, fake_labels], 
y)
        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False

            # plot generator images on a periodic basis
            plot_images(generator,
                        noise_input=noise_input,
                        noise_class=noise_class,
                        show=show,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for 
    # future MNIST digit generation
    generator.save(model_name + ".h5")

Figure 4.3.4 shows the evolution of MNIST digits generated when the generator is 
conditioned to produce digits with the following labels:

[0 1 2 3 
 4 5 6 7 
 8 9 0 1 
 2 3 4 5]
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Figure 4.3.4: The fake images generated by CGAN at different training steps when  
conditioned with labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

You're encouraged to run the trained generator model to see new synthesized 
MNIST digits images:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5

Alternatively, a specific digit (for example, 8) to be generated can also be requested:

cgan-mnist-4.3.1.py --generator=cgan_mnist.h5 --digit=8

With CGAN it's like having an agent that we can ask to draw digits similar 
to how humans write digits. The key advantage of CGAN over DCGAN is that 
we can specify which digit we want the agent to draw.
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Conclusion
This chapter discussed the general principles behind GANs, to give you a foundation 
to the more advanced topics we'll now move on to, including Improved GANs, 
Disentangled Representations GANs, and Cross-Doman GANs. We started this 
chapter by understanding how GANs are made up of two networks called generator 
and discriminator. The role of the discriminator is to discriminate between real 
and fake signals. The aim of the generator is to fool the discriminator. The generator 
is normally combined with the discriminator to form an adversarial network. It is 
through training the adversarial network that the generator learns how to produce 
fake signals that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train. 
Two example implementations in Keras were presented. DCGAN demonstrated 
that it is possible to train GANs to generate fake images using deep CNNs. The 
fake images are MNIST digits. However, the DCGAN generator has no control over 
which specific digit it should draw. CGAN addressed this problem by conditioning 
the generator to draw a specific digit. The condition is in the form of a one-hot label. 
CGAN is useful if we want to build an agent that can generate data of a specific class.

In the next chapter, improvements on the DCGAN and CGAN will be introduced. 
In particular, the focus is on how to stabilize the training of DCGAN and how to 
improve the perceptive quality of CGAN. This will be done by introducing new 
loss functions and slightly different model architectures.
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Improved GANs
Since the introduction of the Generative Adversarial Networks (GANs) in 2014[1], 
its popularity has rapidly increased. GANs have proved to be a useful generative 
model that can synthesize new data that look real. Many of the research papers 
in deep learning that followed, proposed measures to address the difficulties 
and limitations of the original GAN.

As we discussed in previous chapters, GANs can be notoriously difficult to train 
and prone to mode collapse. Mode collapse is a situation where the generator is 
producing outputs that look the same even though the loss functions are already 
optimized. In the context of MNIST digits, with mode collapse, the generator 
may only be producing digits 4 and 9 since they look similar. Wasserstein GAN 
(WGAN)[2] addressed these problems by arguing that stable training and mode 
collapse can be avoided by simply replacing the GAN loss function based on 
Wasserstein 1 or Earth-Mover distance (EMD).

However, the issue of stability is not the only problem of GANs. There is also 
the increasing need to improve the perceptive quality of the generated images. 
Least Squares GAN (LSGAN)[3] proposed to address both these problems 
simultaneously. The basic premise is that sigmoid cross entropy loss leads to 
a vanishing gradient during training. This results in poor image quality. Least 
squares loss does not induce vanishing gradients. The resulting generated images 
are of higher perceptive quality when compared to vanilla GAN generated images.

In the previous chapter, CGAN introduced a method for conditioning the output 
of the generator. For example, if we wanted to get digit 8, we would include the 
conditioning label in the input to the generator. Inspired by CGAN, the Auxiliary 
Classifier GAN (ACGAN)[4] proposed a modified conditional algorithm that 
results in better perceptive quality and diversity of the outputs.
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In summary, the goal of this chapter is to introduce these improved GANs and 
to present:

•	 The theoretical formulation of the WGAN
•	 An understanding of the principles of LSGAN
•	 An understanding of the principles of ACGAN
•	 Knowledge of how to implement improved GANs - WGAN, LSGAN, and 

ACGAN using Keras

Wasserstein GAN
As we've mentioned before, GANs are notoriously hard to train. The opposing 
objectives of the two networks, the discriminator and the generator, can easily 
cause training instability. The discriminator attempts to correctly classify the 
fake data from the real data. Meanwhile, the generator tries its best to trick the 
discriminator. If the discriminator learns faster than the generator, the generator 
parameters will fail to optimize. On the other hand, if the discriminator learns more 
slowly, then the gradients may vanish before reaching the generator. In the worst 
case, if the discriminator is unable to converge, the generator is not going to be able 
to get any useful feedback.

Distance functions
The stability in training a GAN can be understood by examining its loss 
functions. To better understand the GAN loss functions, we're going to review 
the common distance or divergence functions between two probability distributions. 
Our concern is the distance between pdata for true data distribution and pg for 
generator data distribution. The goal of GANs is to make pg → pdata. Table 5.1.1 
shows the divergence functions.

In most maximum likelihood tasks, we'll use Kullback-Leibler (KL) divergence or 
DKL in the loss function as a measure of how far our neural network model prediction 
is from the true distribution function. As shown in Equation 5.1.1, DKL is not 
symmetric since ( ) ( )|| ||KL data g KL g dataD p p D p p≠ .

Jensen-Shannon (JS) or DJS is a divergence that is based on DKL. However, unlike 
DKL, DJS is symmetrical and will be finite. In this section, we'll show that optimizing 
the GAN loss functions is equivalent to optimizing DJS.
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Divergence Expression
Kullback-
Leibler (KL)
5.1.1
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Earth-Mover 
Distance 
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Wasserstein 1
5.1.3

( )
( ) ( ), ~,

, inf
data g

data g x yp p
W p p x yγγ∈∏

 = − E

where ( ),data gp p∏  is the set of all joint distributions y(x,y) whose 
marginal are pdata and pg.

Table 5.1.1: The divergence functions between two probability distribution functions pdata and pg

Figure 5.1.1: The EMD is the weighted amount of mass from x to be transported  
in order to match the target distribution, y
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The intuition behind EMD is that it is a measure of how much mass ( ),x yγ   
should be transported by d = ||x - y|| for the probability distribution pdata  
in order to match the probability distribution pg. ( ),x yγ is a joint distribution in 
the space of all possible joint distributions ( ),data gp p∏ . ( ),x yγ  is also known as 
a transport plan to reflect the strategy for transporting masses to match the two 
probability distributions. There are many possible transport plans given the two 
probability distributions. Roughly speaking, inf indicates a transport plan with  
the minimum cost.

For example, Figure 5.1.1 shows us two simple discrete distributions x  and y . x  
has masses mi for i = 1, 2, 3 and 4 at locations xi for i = 1, 2, 3 and 4. Meanwhile y  
has masses mi for i =1 and 2 at locations yi for i = 1 and 2. To match the distribution  
y , the arrows show the minimum transport plan to move each mass xi by di. The 

EMD is computed as:

( ) ( ) ( ) ( )4

1
0.2 0.4 0.3 0.5 0.1 0.3 0.4 0.7 0.54i ii

EMD x d
=

= = + + + =∑       (Equation 5.1.4)

In Figure 5.1.1, the EMD can be interpreted as the least amount of work needed to 
move the pile of dirt x  to fill the hole y . While in this example, the inf can also be 
deduced from the figure, in most cases especially in continuous distributions, it is 
intractable to exhaust all possible transport plans. We will come back to this problem 
later on in this chapter. In the meantime, we'll show how the GAN loss functions are, 
in fact, minimizing the Jensen-Shannon (JS) divergence.

Distance function in GANs
We're now going to compute the optimal discriminator given any generator from 
the loss function in the previous chapter. We'll recall the following equation:

( ) ( ) ( )( )( )~ log log 1
data

D
x p zx z=− − −E EL D D G      (Equation 4.1.1)

Instead of sampling from the noise distribution, the preceding equation can also 
be expressed as sampling from the generator distribution:

( ) ( ) ( )( )~ ~log log 1
data g

D
x p x px x=− − −E EL D D       (Equation 5.1.5)

To find the minimum ( )DL :
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( ) ( ) ( ) ( ) ( )( )log log 1D
data g

x x

p x x dx p x x dx=− − −∫ ∫L D D           (Equation 5.1.6)

( ) ( ) ( ) ( ) ( )( )( )log log 1D
data g

x

p x x p x D x dx=− + −∫L D           (Equation 5.1.7)

The term inside the integral is in the form of y → a log y + b log(1 - y) which has 
a known maximum value at 

a
a b+  for [ ]0,1y∈ , for any 2,a b∈R  not including {0,0}. 

Since the integral does not change the location of the maximum value (or the 
minimum value of ( )DL ) for this expression, the optimal discriminator is:

( ) data

data g

px
p p

∗ =
+

D           (Equation 5.1.8)

Consequently, the loss function is given the optimal discriminator:

( )
~ ~log log 1

g

D data data
x pdata x p

data g data g

p pE
p p p p
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L           (Equation 5.1.11)

( ) ( )2log 2 2D
JS data gD p p

∗

= −L           (Equation 5.1.12)

We can observe from Equation 5.1.12 that the loss function of the optimal 
discriminator is a constant minus twice the Jensen-Shannon divergence between 
the true distribution, pdata, and any generator distribution, pg. Minimizing ( )D∗L  
implies maximizing ( )JS data gD p p  or the discriminator must correctly classify 
fake from real data.

Meanwhile, we can safely argue that the optimal generator is when the generator 
distribution is equal to the true data distribution: 

( )* g datax p p→ =G      (Equation 5.1.13)
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This makes sense since the objective of the generator is to fool the discriminator by 
learning the true data distribution. Effectively, we can arrive at the optimal generator 
by minimizing DJS, or by making pg → pdata. Given an optimal generator, the optimal 
discriminator is  with ( )* 2 log 2 0.60= =DL .

Figure 5.1.2: An example of two distributions with no overlap. 0.5θ=  for pg

The problem is that when the two distributions have no overlap, there's no smooth 
function that will help to close the gap between them. Training the GANs will not 
converge by gradient descent. For example, let's suppose:

pdata =(x, y) where ( )0, ~ 0,1x y U=      (Equation 5.1.14)

pg = (x, y) where ( ), ~ 0,1x y Uθ=      (Equation 5.1.15)

As shown in Figure 5.1.2. U(0,1) is the uniform distribution. The divergence for each 
distance function is as follows:
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, 1log 1log
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g
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p x y
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Since DJS is a constant, the GAN will not have a sufficient gradient to drive pg → pdata. 
We'll also find that DKL or reverse DKL is not helpful either. However, with W(pdata,pg) 
we can have a smooth function in order to attain pg → pdata by gradient descent. EMD 
or Wasserstein 1 seems to be a more logical loss function in order to optimize GANs 
since DJS fails in situations when two distributions have minimal to no overlap.

For further understanding, an excellent discussion on distance functions can be 
found at https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-
WGAN.html.

Use of Wasserstein loss
Before using EMD or Wasserstein 1, there is one more problem to overcome. It 

is intractable to exhaust the space of ( ),data gp p∏  to find ( )
inf

,data gp pγ ∈∏ . The proposed 
solution is to use its Kantorovich-Rubinstein dual:

( ) ( ) ( )~ ~
1, sup

data gdata g x p x p
f L K

W p p f x f x
K ≤

   = −   E E      (Equation 5.1.16)

Equivalently, EMD, 1
sup
f L≤ , is the supremum (roughly, maximum value) over  

all the K-Lipschitz functions: :f x→ R . K-Lipschitz functions satisfy the constraint:

( ) ( )1 2 1 2f x f x K x x− ≤ −      (Equation 5.1.17)

For all 1 2,x x ∈R , the K-Lipschitz functions have bounded derivatives and almost 
always continuously differentiable (for example, f(x), = |x| has bounded derivatives 
and continuous but not differentiable at x = 0).

Equation 5.1.16 can be solved by finding a family of K-Lipschitz functions { }w w
f

∈W
:

( ) ( ) ( )~ ~, max
data gdata g x p w x p ww

W p p f x f x
∈

   = −   E E
W

     (Equation 5.1.18)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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In the context of GANs, Equation 5.1.18 can be rewritten by sampling from z-noise 
distribution and replacing fw by the discriminator function, Dw:

( ) ( ) ( )( )~, max
datadata g x p w z ww

W p p x z
∈

  = −     E E
W

D D G      (Equation 5.1.19)

We use the bold letter to highlight the generality to multi-dimensional samples. The 
final problem we face is how to find the family of functions w∈W . The proposed 
solution we're going to go over is that at every gradient update, the weights of the 
discriminator, w, are clipped between lower and upper bounds, (for example, -0.0,1 
and 0.01):

( ), 0.01,0.01w clip w← −      (Equation 5.1.20)

The small values of w constrains the discriminator to a compact parameter space 
thus ensuring Lipschitz continuity.

We can use Equation 5.1.19 as the basis of our new GAN loss functions. EMD 
or Wasserstein 1 is the loss function that the generator aims to minimize, and the 
cost function that the discriminator tries to maximize (or minimize -W(pdata,pg)):

( ) ( ) ( )( )~ 5.1.21
data

D
x p w z wx z=− +E EL D D G      (Equation 5.1.21)

( ) ( )( )G
z w z=−EL D G      (Equation 5.1.22)

In the generator loss function, the first term disappears since it is not directly 
optimizing with respect to the real data.

Following table shows the difference between the loss functions of GAN and 
WGAN. For conciseness, we've simplified the notation for ( )DL , and ( )GL . These 
loss functions are used in training the WGAN as shown in Algorithm 5.1.1. Figure 
5.1.3 illustrates that the WGAN model is practically the same as the DCGAN model 
except for the fake/true data labels and loss functions:

Network Loss Functions Equation
GAN ( ) ( ) ( )( )( )~ log log 1

data

D
x p zx z=− − −E EL D D G

( ) ( )( )logG
z z=−EL D G

4.1.1

4.1.5



Chapter 5

[ 133 ]

WGAN ( ) ( ) ( )( )~ data

D
x p w z wx z=− +E EL D D G

( ) ( )( )G
z w z=−EL D G

( ), 0.01,0.01w clip w← −

5.1.21

5.1.22

5.1.20

Table 5.1.1: A comparison between the loss functions of GAN and WGAN

Algorithm 5.1.1 WGAN

The values of the parameters are 0.00005α= , c = 0.01 m = 64, and ncritic = 5.

Require: a , the learning rate. c, the clipping parameter. m, the batch size. ncritic, the 
number of the critic (discriminator) iterations per generator iteration.

Require: w0, initial critic (discriminator) parameters. 0θ , initial generator parameters

1.	 while θ  has not converged do
2.	     for t = 1, …, ncritic do

3.	         Sample a batch ( ){ }
1
~

mi
datai

x p
=

 from the real data

4.	         Sample a batch ( ){ } ( )
1
~

mi

i
z p z

=
 from the uniform noise distribution

5.	         
( )( ) ( )( )( )1 1

1 1m mi i
w w w wi i
g x z

m m θ= =

 
 ←∇ − +
  
∑ ∑D D G , compute the  

        discriminator gradients

6.	         ( ), ww w RMSProp w gα← − × , update the discriminator parameters

7.	         ( ), ,w clip w c c← − , clip discriminator weights
8.	     end for

9.	     Sample a batch ( ){ } ( )
1
~

mi

i
z p z

=
 from the uniform noise distribution

10.	     
( )( )( )1

1 m i
wi

g z
mθ θ θ=

←−∇ ∑ D G , compute the generator gradients

11.	     ( ),RMSProp θθ θ α θ← − × G , update generator parameters
12.	 end while
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Figure 5.1.3: Top: Training the WGAN discriminator requires fake data from the generator and real data from the 
true distribution. Bottom: Training the WGAN generator requires fake data from the generator pretending to be real.

Similar to GANs, WGAN alternately trains the discriminator and generator 
(through adversarial). However, in WGAN, the discriminator (also called the critic) 
trains ncritic iterations (Lines 2 to 8) before training the generator for one iteration 
(Lines 9 to 11). This in contrast to GANs with an equal number of training iteration 
for both discriminator and generator. Training the discriminator means learning the 
parameters (weights and biases) of the discriminator. This requires sampling a batch 
from the real data (Line 3) and a batch from the fake data (Line 4) and computing 
the gradient of discriminator parameters (Line 5) after feeding the sampled data 
to the discriminator network. The discriminator parameters are optimized using 
RMSProp (Line 6). Both lines 5 and 6 are the optimization of Equation 5.1.21. 
Adam was found to be unstable in WGAN. 
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Lastly, the Lipschitz constraint in the EM distance optimization is imposed by 
clipping the discriminator parameters (Line 7). Line 7 is the implementation of 
Equation 5.1.20. After ncritic iterations of discriminator training, the discriminator 
parameters are frozen. The generator training starts by sampling a batch of fake 
data (Line 9). The sampled data is labeled as real (1.0) trying to fool the discriminator 
network. The generator gradients are computed in Line 10 and optimized using 
the RMSProp in Line 11. Lines 10 and 11 perform gradients update to optimize 
Equation 5.1.22.

After training the generator, the discriminator parameters are unfrozen, and another 
ncritic discriminator training iterations start. We should take note that there is no need 
to freeze the generator parameters during discriminator training as the generator is 
only involved in the fabrication of data. Similar to GANs, the discriminator can be 
trained as a separate network. However, training the generator always requires the 
participation of the discriminator through the adversarial network since the loss is 
computed from the output of the generator network.

Unlike GAN, in WGAN real data are labeled 1.0 while fake data are labeled -1.0 
as a workaround in computing the gradient in Line 5. Lines 5-6 and 10-11 perform 
gradient update to optimize Equations 5.1.21 and 5.1.22 respectively. Each term in 
Lines 5 and 10 is modelled as:

1

1 m

label prediction
i

y y
m =

=− ∑L      (Equation 5.1.23)

Where ylabel = 1.0 for the real data and ylabel = -1.0 for the fake data. We removed the 
superscript (i) for simplicity of the notation. For discriminator, WGAN increases 

( )prediction wy x=D  to minimize the loss function when training using the real data. 
When training using fake data, WGAN decreases ( )( )prediction wy z=D G  to minimize the 
loss function. For the generator, WGAN increases ( )( )prediction wy z=D G  as to minimize 
the loss function when the fake data is labeled as real during training. Note that ylabel 
has no direct contribution in the loss function other than its sign. In Keras, Equation 
5.1.23 is implemented as:

def wasserstein_loss(y_label, y_pred):
    return -K.mean(y_label * y_pred)

WGAN implementation using Keras
To implement WGAN within Keras, we can reuse the DCGAN implementation of 
GANs, something we introduced in the previous chapter. The DCGAN builder and 
utility functions are implemented in gan.py in lib folder as a module. 
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The functions include:

•	 generator(): A generator model builder
•	 discriminator(): Discriminator model builder
•	 train(): DCGAN trainer
•	 plot_images(): Generic generator outputs plotter
•	 test_generator(): Generic generator test utility

As shown in Listing 5.1.1, we can build a discriminator by simply calling:

discriminator = gan.discriminator(inputs, activation='linear')

WGAN uses linear output activation. For the generator, we execute:

generator = gan.generator(inputs, image_size)

The overall network model in Keras is similar to the one seen in Figure 4.2.1 
for DCGAN.

Listing 5.1.1 highlights the use of the RMSprop optimizer and Wasserstein loss 
function. The hyper-parameters in Algorithm 5.1.1 are used during training. Listing 
5.1.2 is the training function that closely follows the algorithm. However, there 
is a minor tweak in the training of the discriminator. Instead of training the weights 
in a single combined batch of both real and fake data, we'll train with one batch 
of real data first and then a batch of fake data. This tweak will prevent the gradient 
from vanishing because of the opposite sign in the label of real and fake data and 
the small magnitude of weights due to clipping. 

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Figure 5.1.4 shows the evolution of the WGAN outputs on MNIST dataset.

Listing 5.1.1, wgan-mnist-5.1.2.py. The WGAN model instantiation and training. 
Both discriminator and generator use Wassertein 1 loss, wasserstein_loss():

def build_and_train_models():
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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    x_train = x_train.astype('float32') / 255

    model_name = "wgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    # hyper parameters from WGAN paper [2]
    n_critic = 5
    clip_value = 0.01
    batch_size = 64
    lr = 5e-5
    train_steps = 40000
    input_shape = (image_size, image_size, 1)

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    # WGAN uses linear activation in paper [2]
    discriminator = gan.discriminator(inputs, activation='linear')
    optimizer = RMSprop(lr=lr)
    # WGAN discriminator uses wassertein loss
    discriminator.compile(loss=wasserstein_loss,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = gan.generator(inputs, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    adversarial.compile(loss=wasserstein_loss,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
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    models = (generator, discriminator, adversarial)
    params = (batch_size,
              latent_size,
              n_critic,
              clip_value,
              train_steps,
              model_name)
    train(models, x_train, params)

Listing 5.1.2, wgan-mnist-5.1.2.py. The training procedure for WGAN closely 
follows Algorithm 5.1.1. The discriminator is trained ncritic iterations per 1 generator 
training iteration:

def train(models, x_train, params):
    """Train the Discriminator and Adversarial Networks

    Alternately train Discriminator and Adversarial networks by batch.
    Discriminator is trained first with properly labeled real and fake 
images
    for n_critic times.
    Discriminator weights are clipped as a requirement of Lipschitz 
constraint.
    Generator is trained next (via Adversarial) with fake images
    pretending to be real.
    Generate sample images per save_interval

    # Arguments
        models (list): Generator, Discriminator, Adversarial models
        x_train (tensor): Train images
        params (list) : Networks parameters

    """
    # the GAN models
    generator, discriminator, adversarial = models
    # network parameters
    (batch_size, latent_size, n_critic,
            clip_value, train_steps, model_name) = params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output 
    # evolves during training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16,    
                                    latent_size])
    # number of elements in train dataset
    train_size = x_train.shape[0]
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    # labels for real data
    real_labels = np.ones((batch_size, 1))
    for i in range(train_steps):
        # train discriminator n_critic times
        loss = 0
        acc = 0
        for _ in range(n_critic):
            # train the discriminator for 1 batch
            # 1 batch of real (label=1.0) and 
            # fake images (label=-1.0)
            # randomly pick real images from dataset
            rand_indexes = np.random.randint(0,
                                             train_size,         
                                             size=batch_size)
            real_images = x_train[rand_indexes]
            # generate fake images from noise using generator
            # generate noise using uniform distribution
            noise = np.random.uniform(-1.0,
                                      1.0,
                                      size=[batch_size,                    
                                      latent_size])
            fake_images = generator.predict(noise)

            # train the discriminator network
            # real data label=1, fake data label=-1
            # instead of 1 combined batch of real and fake images,
            # train with 1 batch of real data first, then 1 batch
            # of fake images.
            # this tweak prevents the gradient from vanishing 
            # due to opposite signs of real and
            # fake data labels (i.e. +1 and -1) and
            # small magnitude of weights due to clipping.
            real_loss, real_acc =                      
                         discriminator.train_on_batch(real_images,                                   
                                                      real_labels)
            fake_loss, fake_acc = 
                         discriminator.train_on_batch(fake_images,
                                                      real_labels)
            # accumulate average loss and accuracy
            loss += 0.5 * (real_loss + fake_loss)
            acc += 0.5 * (real_acc + fake_acc)

            # clip discriminator weights to satisfy 
            # Lipschitz constraint
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            for layer in discriminator.layers:
                weights = layer.get_weights()
                weights = [np.clip(weight,
                                   -clip_value,
                                   clip_value) for weight in weights]
                layer.set_weights(weights)

        # average loss and accuracy per n_critic 
        # training iterations
        loss /= n_critic
        acc /= n_critic
        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0
        # since the discriminator weights are 
        # frozen in adversarial network
        # only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0, 1.0, 
                                  size=[batch_size, latent_size])
        # train the adversarial network
        # note that unlike in discriminator training,
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input 
        # of the adversarial for classification
        # fake images are labelled as real
        # log the loss and accuracy
        loss, acc = adversarial.train_on_batch(noise, real_labels)
        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False

            # plot generator images on a periodic basis
            gan.plot_images(generator,
                            noise_input=noise_input,
                            show=show,
                            step=(i + 1),
                            model_name=model_name)
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    # save the model after training the generator
    # the trained generator can be reloaded for future 
    # MNIST digit generation
    generator.save(model_name + ".h5")

Figure 5.1.4: The sample outputs of WGAN vs. training steps.  
WGAN does not suffer mode collapse in all the outputs during training and testing.

WGAN is stable even under network configuration changes. For example, 
DCGAN is known to be unstable when batch normalization is inserted before 
the ReLU in the discriminator network. The same configuration is stable in WGAN. 
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Following figure shows us the outputs of both DCGAN and WGAN with batch 
normalization on the discriminator network:

Figure 5.1.5: A comparison of the output of the DCGAN (Left) and WGAN (Right)  
when batch normalization is inserted before the ReLU activation in the discriminator network

Similar to the GAN training in the previous chapter, the trained model is saved on 
a file after 40,000 train steps. I would encourage you to run the trained generator 
model to see new synthesized MNIST digits images:

python3 wgan-mnist-5.1.2.py --generator=wgan_mnist.h5

Least-squares GAN (LSGAN)
As discussed in the previous section, the original GAN is difficult to train. 
The problem arises when the GAN optimizes its loss function; it's actually 
optimizing the Jensen-Shannon divergence, DJS. It is difficult to optimize DJS 
when there is little to no overlap between two distribution functions. 

WGAN proposed to address the problem by using the EMD or Wasserstein 
1 loss function which has a smooth differentiable function even when there is little 
or no overlap between the two distributions. However, WGAN is not concerned 
with the generated image quality. Apart from stability issues, there are still areas of 
improvement in terms of perceptive quality in the generated images of the original 
GAN. LSGAN theorizes that the twin problems can be solved simultaneously.

LSGAN proposes the least squares loss. Figure 5.2.1 demonstrates why the use of 
a sigmoid cross entropy loss in the GAN results in poorly generated data quality. 
Ideally, the fake samples distribution should be as close as possible to the true 
samples' distribution. However, for GANs, once the fake samples are already 
on the correct side of the decision boundary, the gradients vanish. 
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This prevents the generator from having enough motivation to improve the quality 
of the generated fake data. Fake samples far from the decision boundary will no 
longer attempt to move closer to the true samples' distribution. Using the least 
squares loss function, the gradients do not vanish as long as the fake samples 
distribution is far from the real samples' distribution. The generator will strive 
to improve its estimate of real density distribution even if the fake samples are 
already on the correct side of the decision boundary:

Figure 5.2.1: Both real and fake samples distributions divided by respective decision boundaries:  
Sigmoid and Least squares
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Table 5.2.1: A comparison between the loss functions of GAN and LSGAN
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The preceding table shows the comparison of the loss functions between GAN and 
LSGAN. Minimizing Equation 5.2.1 or the discriminator loss function implies that 
the MSE between real data classification and true label 1.0 should be close to zero. 
In addition, the MSE between the fake data classification and the true label 0.0 
should be close to zero.

Similar to GANs, the LSGAN discriminator is trained to classify real from fake 
data samples. Minimizing Equation 5.2.2 means fooling the discriminator to think 
that the generated fake sample data are real with label 1.0.

Implementing LSGAN using the DCGAN code in the previous chapter as the 
basis requires few changes only. As shown in Listing 5.2.1, the discriminator 
sigmoid activation is removed. The discriminator is built by calling:

discriminator = gan.discriminator(inputs, activation=None)

The generator is similar to the original DCGAN:

generator = gan.generator(inputs, image_size)

Both the discriminator and adversarial loss functions are replaced by mse. All the 
network parameters are the same as in DCGAN. The network model of LSGAN 
in Keras is similar to Figure 4.2.1 except that there is no linear or output activation. 
The training process is similar to that seen in DCGAN and is provided by the utility 
function:

gan.train(models, x_train, params)

Listing 5.2.1, lsgan-mnist-5.2.1.py shows how the discriminator and generator 
are the same in DCGAN except for the discriminator output activation and the use 
of MSE loss function:

def build_and_train_models():
    # MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "lsgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
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    input_shape = (image_size, image_size, 1)
    batch_size = 64
    lr = 2e-4
    decay = 6e-8
    train_steps = 40000

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = gan.discriminator(inputs, activation=None)
    # [1] uses Adam, but discriminator converges 
    # easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # LSGAN uses MSE loss [2]
    discriminator.compile(loss='mse',
                            optimizer=optimizer,
                            metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = gan.generator(inputs, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    # LSGAN uses MSE loss [2]
    adversarial.compile(loss='mse',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    gan.train(models, x_train, params)
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Following figure shows generated samples after training LSGAN using the MNIST 
dataset for 40,000 training steps. The output images have better perceptual quality 
compared to Figure 4.2.1 in DCGAN:

Figure 5.2.2: Sample outputs of LSGAN vs. training steps

I encourage you to run the trained generator model to see the new synthesized 
MNIST digits images:

python3 lsgan-mnist-5.2.1.py --generator=lsgan_mnist.h5
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Auxiliary classifier GAN (ACGAN)
ACGAN is similar in principle to the Conditional GAN (CGAN) that we discussed 
in the previous chapter. We're going to compare both CGAN and ACGAN. For both 
CGAN and ACGAN, the generator inputs are noise and its label. The output is a fake 
image belonging to the input class label. For CGAN, the inputs to the discriminator 
are an image (fake or real) and its label. The output is the probability that the image 
is real. For ACGAN, the input to the discriminator is an image, whilst the output is 
the probability that the image is real and its class label. Following figure highlights 
the difference between CGAN and ACGAN  during generator training:

Figure 5.3.1: CGAN vs. ACGAN generator training.  
The main difference is the input and output of the discriminator.
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Essentially, in CGAN we feed the network with side information (label). In ACGAN, 
we try to reconstruct the side information using an auxiliary class decoder network. 
ACGAN argued that forcing the network to do additional tasks is known to improve 
the performance of the original task. In this case, the additional task is image 
classification. The original task is the generation of fake images.
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Table 5.3.1: A comparison between the loss functions of CGAN and ACGAN

Preceding table shows the ACGAN loss functions as compared to CGAN.  
The ACGAN loss functions are the same as CGAN except for the additional  
classifier loss functions. Apart from the original task of identifying real from fake 
images ( ( ) ( )( )( )~ log | log 1 |

datax p zx y z y− − −E ED D G ), Equation 5.3.1 of the discriminator  
has the additional task of correctly classifying real and fake images  
( ( ) ( )( )~ log | log | |

datax p zc x c z y− −E EP P G ). Equation 5.3.2 of the generator  
means that apart from trying to fool the discriminator with fake images  
( ( )( )log |z z y−E D G ), it is asking the discriminator to correctly classify those  
fake images ( ( )( )log | |z c z y−E P G ).

Starting with the CGAN code, only the discriminator and the training function are 
modified to implement ACGAN. The discriminator and generator builder functions 
are also provided by gan.py. To see the changes made on the discriminator, 
following listing shows the builder function where the auxiliary decoder network 
that performs image classification and the dual outputs are highlighted.

Listing 5.3.1, gan.py shows how the discriminator model builder is the same as 
in DCGAN predicting if an image is real, the first output. An auxiliary decoder 
network is added to perform the image classification and produce the second output:

def discriminator(inputs,
                  activation='sigmoid',
                  num_labels=None,
                  num_codes=None):
    """Build a Discriminator Model
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    Stack of LeakyReLU-Conv2D to discriminate real from fake
    The network does not converge with BN  so it is not used here
    unlike in [1]

    # Arguments
        inputs (Layer): Input layer of the discriminator (the image)
        activation (string): Name of output activation layer
        num_labels (int): Dimension of one-hot labels for ACGAN & 
InfoGAN
        num_codes (int): num_codes-dim Q network as output 
                    if StackedGAN or 2 Q networks if InfoGAN
                    

    # Returns
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    # default output is probability that the image is real
    outputs = Dense(1)(x)
    if activation is not None:
        print(activation)
        outputs = Activation(activation)(outputs)

    if num_labels:
        # ACGAN and InfoGAN have 2nd output
        # 2nd output is 10-dim one-hot vector of label
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        layer = Dense(layer_filters[-2])(x)
        labels = Dense(num_labels)(layer)
        labels = Activation('softmax', name='label')(labels)
        if num_codes is None:
            outputs = [outputs, labels]
        else:
            # InfoGAN have 3rd and 4th outputs
            # 3rd output is 1-dim continous Q of 1st c given x
            code1 = Dense(1)(layer)
            code1 = Activation('sigmoid', name='code1')(code1)

            # 4th output is 1-dim continuous Q of 2nd c given x
            code2 = Dense(1)(layer)
            code2 = Activation('sigmoid', name='code2')(code2)

            outputs = [outputs, labels, code1, code2]
    elif num_codes is not None:
        # z0_recon is reconstruction of z0 normal distribution
        z0_recon =  Dense(num_codes)(x)
        z0_recon = Activation('tanh', name='z0')(z0_recon)
        outputs = [outputs, z0_recon]

    return Model(inputs, outputs, name='discriminator')

The discriminator is then built by calling:

discriminator = gan.discriminator(inputs, num_labels=num_labels)

The generator is the same as the one in ACGAN. To recall, the generator builder is 
shown in the following listing. We should note that both Listings 5.3.1 and 5.3.2 are 
the same builder functions used by WGAN and LSGAN in the previous sections.

Listing 5.3.2, gan.py shows the generator model builder is the same as in CGAN:

def generator(inputs,
              image_size,
              activation='sigmoid',
              labels=None,
              codes=None):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    # Arguments
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        inputs (Layer): Input layer of the generator (the z-vector)
        image_size (int): Target size of one side (assuming square 
image)
        activation (string): Name of output activation layer
        labels (tensor): Input labels
        codes (list): 2-dim disentangled codes for InfoGAN

    # Returns
        Model: Generator Model
    """
    image_resize = image_size // 4
    # network parameters
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    if labels is not None:
        if codes is None:
            # ACGAN labels
            # concatenate z noise vector and one-hot labels
            inputs = [inputs, labels]
        else:
            # infoGAN codes
            # concatenate z noise vector, one-hot labels 
            # and codes 1 & 2
            inputs = [inputs, labels] + codes
        x = concatenate(inputs, axis=1)
    elif codes is not None:
        # generator 0 of StackedGAN
        inputs = [inputs, codes]
        x = concatenate(inputs, axis=1)
    else:
        # default input is just 100-dim noise (z-code)
        x = inputs

    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
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        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    if activation is not None:
        x = Activation(activation)(x)

    # generator output is the synthesized image x
    return Model(inputs, x, name='generator')

In ACGAN, the generator is instantiated as:

generator = gan.generator(inputs, image_size, labels=labels)

Following figure shows the network model of ACGAN in Keras:

Figure 5.3.2: The Keras model of ACGAN
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As shown in Listing 5.3.3, the discriminator and adversarial models are modified 
to accommodate the changes in the discriminator network. We now have two loss 
functions. The first is the original binary cross-entropy to train the discriminator 
in estimating the probability if the input image is real. The second is the image 
classifier predicting the class label. The output is a one-hot vector of 10 dimensions.

Referring to Listing 5.3.3, acgan-mnist-5.3.1.py, where highlighted are the 
changes implemented in the discriminator and adversarial models to accommodate 
the image classifier of the discriminator network. The two loss functions correspond 
to the two outputs of the discriminator:

def build_and_train_models():
    # load MNIST dataset
    (x_train, y_train), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    # train labels
    num_labels = len(np.unique(y_train))
    y_train = to_categorical(y_train)

    model_name = "acgan_mnist"
    # network parameters
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )

    # build discriminator Model
    inputs = Input(shape=input_shape, name='discriminator_input')
    # call discriminator builder with 2 outputs, 
    # pred source and labels
    discriminator = gan.discriminator(inputs, num_labels=num_labels)
    # [1] uses Adam, but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # 2 loss fuctions: 1) probability image is real
    # 2) class label of the image
    loss = ['binary_crossentropy', 'categorical_crossentropy']
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    discriminator.compile(loss=loss,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    labels = Input(shape=label_shape, name='labels')
    # call generator builder with input labels
    generator = gan.generator(inputs, image_size, labels=labels)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model([inputs, labels],
                        discriminator(generator([inputs, labels])),
                        name=model_name)
    # same 2 loss fuctions: 1) probability image is real
    # 2) class label of the image
    adversarial.compile(loss=loss,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    data = (x_train, y_train)
    params = (batch_size, latent_size, train_steps, num_labels, model_
name)
    train(models, data, params)

In Listing 5.3.4, we highlight the changes implemented in the training routine. The 
main difference compared to CGAN code is that the output label must be supplied 
during discriminator and adversarial training.

As seen in Listing 5.3.4, acgan-mnist-5.3.1.py, the changes implemented in the 
train function are highlighted:

def train(models, data, params):
    """Train the discriminator and adversarial Networks
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    Alternately train discriminator and adversarial networks by batch.
    Discriminator is trained first with real and fake images and
    corresponding one-hot labels.
    Adversarial is trained next with fake images pretending to be real 
and 
    corresponding one-hot labels.
    Generate sample images per save_interval.

    # Arguments
        models (list): Generator, Discriminator, Adversarial models
        data (list): x_train, y_train data
        params (list): Network parameters

    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and their one-hot labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name = 
params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output 
    # evolves during training
    noise_input = np.random.uniform(-1.0, 
                                    1.0,
                                    size=[16, latent_size])
    # class labels are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5
    # the generator must produce these MNIST digits
    noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_label, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images and corresponding labels 
        # from dataset 
        rand_indexes = np.random.randint(0, 
                                         train_size, 
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                                         size=batch_size)
        real_images = x_train[rand_indexes]
        real_labels = y_train[rand_indexes]
        # generate fake images from noise using generator
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # randomly pick one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                      batch_size)]
        # generate fake images
        fake_images = generator.predict([noise, fake_labels])
        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        # real + fake labels = 1 batch of train data labels
        labels = np.concatenate((real_labels, fake_labels))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0
        # train discriminator network, log the loss and accuracy
        # ['loss', 'activation_1_loss', 'label_loss', 
        # 'activation_1_acc', 'label_acc']
        metrics  = discriminator.train_on_batch(x, [y, labels])
        fmt = "%d: [disc loss: %f, srcloss: %f, lblloss: %f, srcacc: 
%f, lblacc: %f]"
        log = fmt % (i, metrics[0], metrics[1], metrics[2], 
metrics[3], metrics[4])

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0 and
        # corresponding one-hot label or class 
        # since the discriminator weights are frozen 
        # in adversarial network
        # only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # randomly pick one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
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                                                      batch_size)]
        # label fake images as real
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input 
        # of the adversarial
        # for classification
        # log the loss and accuracy
        metrics  = adversarial.train_on_batch([noise, fake_labels],
                                            [y, fake_labels])
        fmt = "%s [advr loss: %f, srcloss: %f, lblloss: %f, srcacc: 
%f, lblacc: %f]"
        log = fmt % (log, metrics[0], metrics[1], metrics[2], 
metrics[3], metrics[4])
        print(log)
        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False

            # plot generator images on a periodic basis
            gan.plot_images(generator,
                        noise_input=noise_input,
                        noise_label=noise_label,
                        show=show,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for 
    # future MNIST digit generation
    generator.save(model_name + ".h5")

In turned out that with the additional task, the performance improvement in 
ACGAN is significant compared to all GANs that we have discussed previously. 
ACGAN training is stable as shown in Figure 5.3.3 sample outputs of ACGAN for 
the following labels:

[0 1 2 3 

 4 5 6 7 

 8 9 0 1 

 2 3 4 5]
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Unlike CGAN, the sample outputs appearance does not vary widely during training. 
The MNIST digit image perceptive quality is also better. Figure 5.3.4 shows a side by 
side comparison of every MNIST digit produced by both CGAN and ACGAN. Digits 
2-6 are of better quality in ACGAN than in CGAN.

I encourage you to run the trained generator model to see new synthesized MNIST 
digits images:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5

Alternatively, a specific digit (for example, 3) to be generated can also be requested:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5 --digit=3

Figure 5.3.3: The sample outputs generated by the ACGAN as a function of train steps  
for labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]
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Figure 5.3.4: A side by side comparison of outputs of CGAN and ACGAN conditioned with digits 0 to 9
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Conclusion
In this chapter, we've presented various improvements in the original algorithm 
of GAN, first introduced in the previous chapter. WGAN proposed an algorithm 
to improve the stability of training by using the EMD or Wassertein 1 loss. LSGAN 
argued that the original cross-entropy function of GAN is prone to vanishing 
gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable 
training and quality outputs. ACGAN convincingly improved the quality of the 
conditional generation of MNIST digits by requiring the discriminator to perform 
classification task on top of determining whether the input image is fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs. 
Whilst CGAN and ACGAN are able to indicate the desired digits to produce; we 
have not analyzed GANs that can specify the attributes of outputs. For example, 
we may want to control the writing style of the MNIST digits such as roundness, 
tilt angle, and thickness. Therefore, the goal will be to introduce GANs with 
disentangled representations to control the specific attributes of the generator 
outputs.
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Disentangled  
Representation GANs

As we've explored, GANs can generate meaningful outputs by learning the 
data distribution. However, there was no control over the attributes of the outputs 
generated. Some variations of GANs like Conditional GAN (CGAN) and Auxiliary 
Classifier GAN (ACGAN), as discussed in the previous chapter are able to train 
a generator that is conditioned to synthesize specific outputs. For example, both 
CGAN and ACGAN can induce the generator to produce a specific MNIST digit. 
This is achieved by using both a 100-dim noise code and the corresponding one-
hot label as inputs. However, other than the one-hot label, we have no other ways 
to control the properties of generated outputs.

For a review on CGAN and ACGAN, please see Chapter 4, Generative 
Adversarial Networks (GANs), and Chapter 5, Improved GANs.

In this chapter, we will be covering the variations of GANs that enable us to 
modify the generator outputs. In the context of the MNIST dataset, apart from 
which number to produce, we may find that we want to control the writing style. 
This could involve the tilt or the width of the desired digit. In other words, GANs 
can also learn disentangled latent codes or representations that we can use to vary 
the attributes of the generator outputs. A disentangled code or representation is 
a tensor that can change a specific feature or attribute of the output data while 
not affecting the other attributes.
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In the first section of this chapter, we will be discussing InfoGAN: Interpretable 
Representation Learning by Information Maximizing Generative Adversarial Nets [1], 
an extension to GANs. InfoGAN learns the disentangled representations in an 
unsupervised manner by maximizing the mutual information between the input 
codes and the output observation. On the MNIST dataset, InfoGAN disentangles 
the writing styles from digits dataset.

In the following part of the chapter, we'll also be discussing the Stacked Generative 
Adversarial Networks or StackedGAN [2], another extension to GANs. 
StackedGAN uses a pretrained encoder or classifier in order to aid in disentangling 
the latent codes. StackedGAN can be viewed as a stack of models, with each being 
made of an encoder and a GAN. Each GAN is trained in an adversarial manner by 
using the input and output data of the corresponding encoder.

In summary, the goal of this chapter is to present:

•	 The concepts of disentangled representations
•	 The principles of both InfoGAN and StackedGAN
•	 Implementation of both InfoGAN and StackedGAN using Keras

Disentangled representations
The original GAN was able to generate meaningful outputs, but the downside 
was that it couldn't be controlled. For example, if we trained a GAN to learn the 
distribution of celebrity faces, the generator would produce new images of celebrity-
looking people. However, there is no way to influence the generator on the specific 
attributes of the face that we want. For example, we're unable to ask the generator for 
a face of a female celebrity with long black hair, a fair complexion, brown eyes, and 
whose smiling. The fundamental reason for this is because the 100-dim noise code 
that we use entangles all of the salient attributes of the generator outputs. We can 
recall that in Keras, the 100-dim code was generated by random sampling of uniform 
noise distribution:

# generate 64 fake images from 64 x 100-dim uniform noise
noise = np.random.uniform(-1.0, 1.0, size=[64, 100])
fake_images = generator.predict(noise)

If we are able to modify the original GAN, such that we were able to separate the 
code or representation into entangled and disentangled interpretable latent codes, 
we would be able to tell the generator what to synthesize.
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Following figure shows us a GAN with an entangled code and its variation with 
a mixture of entangled and disentangled representations. In the context of the 
hypothetical celebrity face generation, with the disentangled codes, we are able to 
indicate the gender, hairstyle, facial expression, skin complexion and eye color of 
the face we wish to generate. The n–dim entangled code is still needed to represent 
all the other facial attributes that we have not disentangled like the face shape, 
facial hair, eye-glasses, as just three examples. The concatenation of entangled and 
disentangled codes serves as the new input to the generator. The total dimension of 
the concatenated code may not be necessarily 100:

Figure 6.1.1: The GAN with the entangled code and its variation with both entangled  
and disentangled codes. This example is shown in the context of celebrity face generation.

Looking at preceding figure, it appears that GANs with disentangled representations 
can also be optimized in the same way as a vanilla GAN can be. This is because 
the generator output can be represented as:

( ) ( ),z c = zG G           (Equation 6.1.1)

The code ( )= ,z cz  is made of two elements:

1.	 Incompressible entangled noise code similar to GANs z or noise vector.
2.	 Latent codes, c1,c2,…,cL, which represent the interpretable disentangled codes 

of the data distribution. Collectively all latent codes are represented by c.

For simplicity, all the latent codes are assumed to be independent:

( ) ( )1 2 1
, , , L

L ii
p c c c p c

=
=∏…           (Equation 6.1.2)

The generator function ( ) ( ),x z c= = zG G  is provided with both the incompressible 
noise code and the latent codes. From the point of view of the generator, optimizing 

( )= ,z cz  is the same as optimizing z. The generator network will simply ignore 
the constraint imposed by the disentangled codes when coming up with a solution. 
The generator learns the distribution ( ) ( )|g gp x c p x= . This will practically defeat 
the objective of disentangled representations.
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InfoGAN
To enforce the disentanglement of codes, InfoGAN proposed a regularizer to the 
original loss function that maximizes the mutual information between the latent 
codes c and ( ),z cG :

( )( ) ( )( ); , ;I c z c I c= zG G           (Equation 6.1.3)

The regularizer forces the generator to consider the latent codes when it formulates 
a function that synthesizes the fake images. In the field of information theory, 
the mutual information between latent codes c and ( ),z cG  is defined as:

( )( ) ( ) ( )( ); , | ,I c z c H c H c z c= −G G           (Equation 6.1.4)

Where H(c) is the entropy of the latent code c and ( )( )| ,H c z cG  is the conditional 
entropy of c, after observing the output of the generator, ( ),z cG . Entropy 
is a measure of uncertainty of a random variable or an event. For example, 
information like, the sun rises in the east, has low entropy. Whereas, winning 
the jackpot in the lottery has high entropy. 

In Equation 6.1.4, maximizing the mutual information means minimizing 
( )( )| ,H c z cG  or decreasing the uncertainty in the latent code upon observing the 

generated output. This makes sense since, for example, in the MNIST dataset, the 
generator becomes more confident in synthesizing the digit 8 if the GAN sees that 
it observed the digit 8.

However, it is hard to estimate ( )( )| ,H c z cG  since it requires knowledge of the 
posterior ( )( ) ( )| , |P c z c P c x=G , which is something that we don't have access to. The 
workaround is to estimate the lower bound of mutual information by estimating the 
posterior with an auxiliary distribution Q(c|x). InfoGAN estimates the lower bound 
of mutual information as:

( )( ) ( ) ( ) ( ) ( ) ( ), ,; , , log |I c P c x z cI c z c L Q E Q c x H c≥ = +  ∼ ∼GG G           (Equation 6.1.5)

In InfoGAN, H(c) is assumed to be a constant. Therefore, maximizing the mutual 
information is a matter of maximizing the expectation. The generator must be 
confident that it has generated an output with the specific attributes. We should 
note that the maximum value of this expectation is zero. Therefore, the maximum 
of the lower bound of the mutual information is H(c). In InfoGAN, Q(c|x) for 
discrete latent codes can be represented by softmax nonlinearity. The expectation 
is the negative categorical_crossentropy loss in Keras.
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For continuous codes of a single dimension, the expectation is a double integral 
over c and x. This is due to the expectation that samples from both disentangled 
code distribution and generator distribution. One way of estimating the expectation 
is by assuming the samples as a good measure of continuous data. Therefore, the loss 
is estimated as c log Q(c|x).

To complete the network of InfoGAN, we should have an implementation of Q(c|x). 
For simplicity, the network Q is an auxiliary network attached to the second to last 
layer of the discriminator. Therefore, this has a minimal impact on the training of the 
original GAN. Following figure shows InfoGAN network diagram:

Figure 6.1.2: A network diagram showing the discriminator and generator training in InfoGAN
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Following table shows the loss functions of InfoGAN as compared to the original 
GAN. The loss functions of InfoGAN differ from the original GAN by an additional 
term ( )( ); ,I c z cλ− G  where λ  is a small positive constant. Minimizing the loss 
function of InfoGAN translates to minimizing the loss of the original GAN and 
maximizing the mutual information ( )( ); ,I c z cG .

Network Loss Functions Number
GAN ( ) ( ) ( )( )( )log log 1

data

D
x p z= − − − z∼E EL D D Gx

( ) ( )( )logG
z= − zEL D G

4.1.1

4.1.5
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D
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For continuous codes, InfoGAN recommends a value of 1λ < . In our 
example, we set 0.5λ = . For discrete codes, InfoGAN recommends 

1λ = .

6.1.1

6.1.2

Table 6.1.1: A comparison between the loss functions of GAN and InfoGAN

If applied on the MNIST dataset, InfoGAN can learn the disentangled discrete and 
continuous codes in order to modify the generator output attributes. For example, 
like CGAN and ACGAN, the discrete code in the form of a 10-dim one-hot label will 
be used to specify the digit to generate. However, we can add two continuous codes, 
one for controlling the angle of writing style and another for adjusting the stroke 
width. Following figure shows the codes for the MNIST digit in InfoGAN. We retain 
the entangled code with a smaller dimensionality to represent all other attributes:

Figure 6.1.3: The codes for both GAN and InfoGAN in the context of MNIST dataset
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Implementation of InfoGAN in Keras
To implement InfoGAN on MNIST dataset, there are some changes that need to be 
made in the base code of ACGAN. As highlighted in following listing, the generator 
concatenates both entangled (z noise code) and disentangled codes (one-hot label 
and continuous codes) to serve as input. The builder functions for the generator 
and discriminator are also implemented in gan.py in the lib folder.

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Listing 6.1.1, infogan-mnist-6.1.1.py shows us how the InfoGAN generator 
concatenates both entangled and disentangled codes to serve as input:

def generator(inputs,
              image_size,
              activation='sigmoid',
              labels=None,
              codes=None):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    # Arguments
        inputs (Layer): Input layer of the generator (the z-vector)
        image_size (int): Target size of one side (assuming square 
image)
        activation (string): Name of output activation layer
        labels (tensor): Input labels
        codes (list): 2-dim disentangled codes for InfoGAN

    # Returns
        Model: Generator Model
    """
    image_resize = image_size // 4
    # network parameters
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    if labels is not None:
        if codes is None:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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            # ACGAN labels
            # concatenate z noise vector and one-hot labels
            inputs = [inputs, labels]
        else:
            # infoGAN codes
            # concatenate z noise vector, one-hot labels, 
            # and codes 1 & 2
            inputs = [inputs, labels] + codes
        x = concatenate(inputs, axis=1)
    elif codes is not None:
        # generator 0 of StackedGAN
        inputs = [inputs, codes]
        x = concatenate(inputs, axis=1)
    else:
        # default input is just 100-dim noise (z-code)
        x = inputs

    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    if activation is not None:
        x = Activation(activation)(x)

    # generator output is the synthesized image x
    return Model(inputs, x, name='generator')

The preceding listing shows the discriminator and Q-Network with the original 
default GAN output. The three auxiliary outputs corresponding to discrete code 
(for one-hot label) softmax prediction and the continuous codes probabilities 
given the input MNIST digit image are highlighted.
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Listing 6.1.2, infogan-mnist-6.1.1.py. InfoGAN discriminator and Q-Network:

def discriminator(inputs,
                  activation='sigmoid',
                  num_labels=None,
                  num_codes=None):
    """Build a Discriminator Model

    Stack of LeakyReLU-Conv2D to discriminate real from fake
    The network does not converge with BN so it is not used here
    unlike in [1]

    # Arguments
        inputs (Layer): Input layer of the discriminator (the image)
        activation (string): Name of output activation layer
        num_labels (int): Dimension of one-hot labels for ACGAN & 
InfoGAN
        num_codes (int): num_codes-dim Q network as output 
                    if StackedGAN or 2 Q networks if InfoGAN
                    

    # Returns
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    # default output is probability that the image is real
    outputs = Dense(1)(x)
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    if activation is not None:
        print(activation)
        outputs = Activation(activation)(outputs)

    if num_labels:
        # ACGAN and InfoGAN have 2nd output
        # 2nd output is 10-dim one-hot vector of label
        layer = Dense(layer_filters[-2])(x)
        labels = Dense(num_labels)(layer)
        labels = Activation('softmax', name='label')(labels)
        if num_codes is None:
            outputs = [outputs, labels]
        else:
            # InfoGAN have 3rd and 4th outputs
            # 3rd output is 1-dim continous Q of 1st c given x
            code1 = Dense(1)(layer)
            code1 = Activation('sigmoid', name='code1')(code1)

            # 4th output is 1-dim continuous Q of 2nd c given x
            code2 = Dense(1)(layer)
            code2 = Activation('sigmoid', name='code2')(code2)

            outputs = [outputs, labels, code1, code2]
    elif num_codes is not None:
	    # StackedGAN Q0 output
        # z0_recon is reconstruction of z0 normal distribution
        z0_recon =  Dense(num_codes)(x)
        z0_recon = Activation('tanh', name='z0')(z0_recon)
        outputs = [outputs, z0_recon]

 return Model(inputs, outputs, name='discriminator')

Figure 6.1.4 shows the InfoGAN model in Keras. Building the discriminator and 
adversarial models also requires a number of changes. The changes are on the loss 
functions used. The original discriminator loss function binary_crossentropy, 
the categorical_crossentropy for discrete code, and the mi_loss function for 
each continuous code comprise the overall loss function. Each loss function is given 
a weight of 1.0, except for the mi_loss function which is given 0.5 corresponding  
to 0.5λ =  for the continuous code.

Listing 6.1.3 highlights the changes made. However, we should note that by using 
the builder function, the discriminator is instantiated as:
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# call discriminator builder with 4 outputs: source, label, 
# and 2 codes
discriminator = gan.discriminator(inputs, num_labels=num_labels, with_
codes=True)

The generator is created by:

# call generator with inputs, labels and codes as total inputs 
# to generator
generator = gan.generator(inputs, image_size, labels=labels, 
codes=[code1, code2])

Figure 6.1.4: The InfoGAN Keras model
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Listing 6.1.3, infogan-mnist-6.1.1.py shows us the mutual Information loss 
function as used in building the InfoGAN discriminator and adversarial networks:

def mi_loss(c, q_of_c_given_x):
    """ Mutual information, Equation 5 in [2], assuming H(c) is 
constant"""
    # mi_loss = -c * log(Q(c|x))
    return K.mean(-K.sum(K.log(q_of_c_given_x + K.epsilon()) * c, 
axis=1))

def build_and_train_models(latent_size=100):
    # load MNIST dataset
    (x_train, y_train), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    # train labels
    num_labels = len(np.unique(y_train))
    y_train = to_categorical(y_train)

    model_name = "infogan_mnist"
    # network parameters
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )
    code_shape = (1, )

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    # call discriminator builder with 4 outputs: 
    # source, label, and 2 codes
    discriminator = gan.discriminator(inputs,
                                      num_labels=num_labels,
                                      num_codes=2)
    # [1] uses Adam, but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # loss functions: 1) probability image is real (binary 
crossentropy)
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    # 2) categorical cross entropy image label,
    # 3) and 4) mutual information loss
    loss = ['binary_crossentropy', 'categorical_crossentropy', mi_
loss, mi_loss]
    # lamda or mi_loss weight is 0.5
    loss_weights = [1.0, 1.0, 0.5, 0.5]
    discriminator.compile(loss=loss,
                          loss_weights=loss_weights,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    labels = Input(shape=label_shape, name='labels')
    code1 = Input(shape=code_shape, name="code1")
    code2 = Input(shape=code_shape, name="code2")
    # call generator with inputs, 
    # labels and codes as total inputs to generator
    generator = gan.generator(inputs,
                              image_size,
                              labels=labels,
                              codes=[code1, code2])
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    discriminator.trainable = False
    # total inputs = noise code, labels, and codes
    inputs = [inputs, labels, code1, code2]
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    # same loss as discriminator
    adversarial.compile(loss=loss,
                        loss_weights=loss_weights,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
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    data = (x_train, y_train)
    params = (batch_size, latent_size, train_steps, num_labels,  
model_name)
    train(models, data, params)

As far as the training is concerned, we can see that InfoGAN is similar to ACGAN 
except that we need to supply c for the continuous code. c is drawn from normal 
distribution with a standard deviation of 0.5 and mean of 0.0. We'll use randomly 
sampled labels for the fake data and dataset class labels for the real data to represent 
discrete latent code. Following listing highlights the changes made on the training 
function. Similar to all previous GANs, the discriminator and generator (through 
adversarial) are trained alternately. During adversarial training, the discriminator 
weights are frozen. Sample generator output images are saved every 500 interval 
steps by using the gan.py plot_images() function.

Listing 6.1.4, infogan-mnist-6.1.1.py shows us how the training function for 
InfoGAN is similar to ACGAN. The only difference is that we supply continuous 
codes sampled from a normal distribution:

def train(models, data, params):
    """Train the Discriminator and Adversarial networks

    Alternately train discriminator and adversarial networks by batch.
    Discriminator is trained first with real and fake images,
    corresponding one-hot labels and continuous codes.
    Adversarial is trained next with fake images pretending to be 
real,
    corresponding one-hot labels and continous codes.
    Generate sample images per save_interval.

    # Arguments
        models (Models): Generator, Discriminator, Adversarial models
        data (tuple): x_train, y_train data
        params (tuple): Network parameters
    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and their one-hot labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name = 
params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output evolves 
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    # during training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
    # random class labels and codes
    noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    noise_code1 = np.random.normal(scale=0.5, size=[16, 1])
    noise_code2 = np.random.normal(scale=0.5, size=[16, 1])
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_label, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images and corresponding labels from 
dataset 
        rand_indexes = np.random.randint(0, train_size, size=batch_
size)
        real_images = x_train[rand_indexes]
        real_labels = y_train[rand_indexes]
        # random codes for real images
        real_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
        real_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
        # generate fake images, labels and codes
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        fake_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
        fake_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
        inputs = [noise, fake_labels, fake_code1, fake_code2]
        fake_images = generator.predict(inputs)

        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        labels = np.concatenate((real_labels, fake_labels))
        codes1 = np.concatenate((real_code1, fake_code1))
        codes2 = np.concatenate((real_code2, fake_code2))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0



Disentangled Representation GANs

[ 176 ]

        y[batch_size:, :] = 0

        # train discriminator network, log the loss and label accuracy
        outputs = [y, labels, codes1, codes2]
        # metrics = ['loss', 'activation_1_loss', 'label_loss',
        # 'code1_loss', 'code2_loss', 'activation_1_acc',
        # 'label_acc', 'code1_acc', 'code2_acc']
        # from discriminator.metrics_names
        metrics = discriminator.train_on_batch(x, outputs)
        fmt = "%d: [discriminator loss: %f, label_acc: %f]"
        log = fmt % (i, metrics[0], metrics[6])

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0 and
        # corresponding one-hot label or class + random codes
        # since the discriminator weights are frozen in 
        # adversarial network only the generator is trained
        # generate fake images, labels and codes
        noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_
size])
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        fake_code1 = np.random.normal(scale=0.5, size=[batch_size, 1])
        fake_code2 = np.random.normal(scale=0.5, size=[batch_size, 1])
        # label fake images as real
        y = np.ones([batch_size, 1])

        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input of the 
        # adversarial for classification
        # log the loss and label accuracy
        inputs = [noise, fake_labels, fake_code1, fake_code2]
        outputs = [y, fake_labels, fake_code1, fake_code2]
        metrics  = adversarial.train_on_batch(inputs, outputs)
        fmt = "%s [adversarial loss: %f, label_acc: %f]"
        log = fmt % (log, metrics[0], metrics[6])

        print(log)
        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False
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            # plot generator images on a periodic basis
            gan.plot_images(generator,
                            noise_input=noise_input,
                            noise_label=noise_label,
                            noise_codes=[noise_code1, noise_code2],
                            show=show,
                            step=(i + 1),
                            model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for
    # future MNIST digit generation
    generator.save(model_name + ".h5")

Generator outputs of InfoGAN
Similar to all previous GANs that have been presented to us, we've trained InfoGAN 
for 40,000 steps. After the training is completed, we're able to run the InfoGAN 
generator to generate new outputs using the model saved on the infogan_mnist.h5 
file. The following validations are conducted:

1.	 Generate digits 0 to 9 by varying the discrete labels from 0 to 9. Both 
continuous codes are set to zero. The results are shown in Figure 6.1.5. We 
can see that the InfoGAN discrete code can control the digits produced by 
the generator:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5 
--digit=0 --code1=0 --code2=0

              to

python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5 
--digit=9 --code1=0 --code2=0

2.	 Examine the effect of the first continuous code to understand which attribute 
has been affected. We vary the first continuous code from -2.0 to 2.0 for digits 
0 to 9. The second continuous code is set to 0.0. Figure 6.1.6 shows that the 
first continuous code controls the thickness of the digit:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5 
--digit=0 --code1=0 --code2=0 --p1

3.	 Similar to the previous step, but instead focusing more on the second 
continuous code. Figure 6.1.7 shows that the second continuous code 
controls the rotation angle (tilt) of the writing style:
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python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5 
--digit=0 --code1=0 --code2=0 --p2

Figure 6.1.5: The images generated by the InfoGAN as the discrete code  
is varied from 0 to 9. Both continuous codes are set to zero.

Figure 6.1.6: The images generated by InfoGAN as the first continuous code is varied from -2.0 to 2.0 for digits 
0 to 9. The second continuous code is set to zero. The first continuous code controls the thickness of the digit.
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Figure 6.1.7: The images generated by InfoGAN as the second continuous code is varied from -2.0 to 2.0 for 
digits 0 to 9. The first continuous code is set to zero. The second continuous code controls the rotation angle 

(tilt) of the writing style.

From these validation results, we can see that apart from the ability to generate 
MNIST looking digits, InfoGAN expanded the ability of conditional GANs such 
as CGAN and ACGAN. The network automatically learned two arbitrary codes 
that can control the specific attributes of the generator output. It would be interesting 
to see what additional attributes could be controlled if we increased the number 
of continuous codes beyond 2.

StackedGAN
In the same spirit as InfoGAN, StackedGAN proposes a method for disentangling 
latent representations for conditioning generator outputs. However, StackedGAN 
uses a different approach to the problem. Instead of learning how to condition the 
noise to produce the desired output, StackedGAN breaks down a GAN into a stack 
of GANs. Each GAN is trained independently in the usual discriminator-adversarial 
manner with its own latent code.

Figure 6.2.1 shows us how StackedGAN works in the context of the hypothetical 
celebrity face generation. Assuming that the Encoder network is trained to classify 
celebrity faces. 
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The Encoder network is made of a stack of simple encoders, Encoderi where i = 0 … 
n - 1 corresponding to n features. Each encoder extracts certain facial features. For 
example, Encoder0 may be the encoder for hairstyle features, Features1. All the simple 
encoders contribute to making the overall Encoder perform correct predictions.

The idea behind StackedGAN is that if we would like to build a GAN that generates 
fake celebrity faces, we should simply invert the Encoder. StackedGAN are made 
of a stack of simpler GANs, GANi where i = 0 … n - 1 corresponding to n features. 
Each GANi learns to invert the process of its corresponding encoder, Encoderi. For 
example, GAN0 generates fake celebrity faces from fake hairstyle features which is 
the inverse of the Encoder0 process.

Each GANi uses a latent code, zi, that conditions its generator output. For example, 
the latent code, z0, can alter the hairstyle from curly to wavy. The stack of GANs 
can also act as one to synthesize fake celebrity faces, completing the inverse process 
of the whole Encoder. The latent code of each GANi, zi, can be used to alter specific 
attributes of fake celebrity faces:

Figure 6.2.1: The basic idea of StackedGAN in the context of celebrity faces generation. Assuming that there is 
a hypothetical deep encoder network that can perform classification on celebrity faces, a StackedGAN simply 

inverts the process of the encoder.
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Implementation of StackedGAN in Keras
The detailed network model of StackedGAN can be seen in the following figure. 
For conciseness, only two encoder-GANs per stack are shown. The figure may 
initially appear complex, but it is just a repetition of an encoder-GAN. Meaning 
that if we understood how to train one encoder-GAN, the rest uses the same concept. 
In the following section, we assume that the StackedGAN is designed for the MNIST 
digit generation:

Figure 6.2.2: A StackedGAN is made of a stack of an encoder and GAN. The encoder is pre-trained to  
perform classification. Generator1, G1, learns to synthesize f1f features conditioned on the fake label, yf, and  

latent code, z1f. Generator0, G0, produces fake images using both the fake features, f1f and latent code, z0f.
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StackedGAN starts with an Encoder. It could be a trained classifier that predicts 
the correct labels. The intermediate features vector, f1r, is made available for 
GAN training. For MNIST, we can use a CNN-based classifier similar to what 
we discussed in Chapter 1, Introducing Advanced Deep Learning with Keras. Following 
figure shows the Encoder and its network model implementation in Keras:

Figure 6.2.3: The encoder in StackedGAN is a simple CNN-based classifier

Listing 6.2.1 shows the Keras code for preceding figure. It is similar to the CNN-
based classifier in Chapter 1, Introducing Advanced Deep Learning with Keras except 
that we use a Dense layer to extract the 256-dim feature. There are two output 
models, Encoder0 and Encoder1. Both will be used to train the StackedGAN.

The Encoder0 output, f1r, is the 256-dim feature vector that we want Generator1 to learn 
to synthesize. It is available as an auxiliary output of Encoder0, E0. The overall Encoder 
is trained to classify MNIST digits, xr. The correct labels, yr, are predicted by Encoder1, 
E1. In the process, the intermediate set of features, f1r, is learned and made available 
for Generator0 training. Subscript r is used to emphasize and distinguish real data 
from fake data when the GAN is trained against this encoder.

Listing 6.2.1, stackedgan-mnist-6.2.1.py shows encoder implementation in Keras:

def build_encoder(inputs, num_labels=10, feature1_dim=256):
    """ Build the Classifier (Encoder) Model sub networks

    Two sub networks: 
    1) Encoder0: Image to feature1 (intermediate latent feature)
    2) Encoder1: feature1 to labels
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    # Arguments
        inputs (Layers): x - images, feature1 - feature1 layer output
        num_labels (int): number of class labels
        feature1_dim (int): feature1 dimensionality

    # Returns
        enc0, enc1 (Models): Description below 
    """
    kernel_size = 3
    filters = 64

    x, feature1 = inputs
    # Encoder0 or enc0
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(x)
    y = MaxPooling2D()(y)
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(y)
    y = MaxPooling2D()(y)
    y = Flatten()(y)
    feature1_output = Dense(feature1_dim, activation='relu')(y)
    # Encoder0 or enc0: image to feature1 
    enc0 = Model(inputs=x, outputs=feature1_output, name="encoder0")

    # Encoder1 or enc1
    y = Dense(num_labels)(feature1)
    labels = Activation('softmax')(y)
    # Encoder1 or enc1: feature1 to class labels
    enc1 = Model(inputs=feature1, outputs=labels, name="encoder1")

    # return both enc0 and enc1
    return enc0, enc1

Network Loss Functions Number
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Table 6.2.1: A comparison between the loss functions of GAN and StackedGAN.  
~pdata means sampling from the corresponding encoder data (input, feature or output).

Given the Encoder inputs (xr) intermediate features (f1r) and labels (yr), each GAN 
is trained in the usual discriminator–adversarial manner. The loss functions are 
given by Equation 6.2.1 to 6.2.5 in Table 6.2.1. Equations 6.2.1 and 6.2.2 are the usual 
loss functions of the generic GAN. StackedGAN has two additional loss functions, 
Conditional and Entropy.

The conditional loss function, ( )condG
iL  in Equation 6.2.3, ensures that the generator does 

not ignore the input, fi+1, when synthesizing the output, fi, from input noise code 
zi. The encoder, Encoderi, must be able to recover the generator input by inverting 
the process of the generator, Generatori. The difference between the generator input 
and the recovered input using the encoder is measured by L2 or Euclidean distance 
Mean Squared Error (MSE). Figure 6.2.4 shows the network elements involved in 
the computation of ( )

0
condGL :
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Figure 6.2.4: A simpler version of Figure 6.2.3 showing only the network elements  
involved in the computation of ( )

0
condGL

The conditional loss function, however, introduces a new problem for us. The generator 
ignores the input noise code, zi and simply relies on fi+1. Entropy loss function, ( )

0
condGL  

in Equation 6.2.4, ensures that the generator does not ignore the noise code, zi. The 
Q-Network recovers the noise code from the output of the generator. The difference 
between the recovered noise and the input noise is also measured by L2 or the MSE. 
Following figure shows the network elements involved in the computation of ( )

0
entGL :

Figure 6.2.5: A simpler version of Figure 6.2.3 only showing us the network elements involved in the 
computation of ( )

0
entGL
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The last loss function is similar to the usual GAN loss. It's made of a discriminator 
loss ( )D

iL  and a generator (through adversarial) loss ( )advG
iL . Following figure shows 

us the elements involved in the GAN loss:

Figure 6.2.6: A simpler version of Figure 6.2.3 showing only the network elements  
involved in the computation of ( )D

iL  and ( )advG
iL

In Equation 6.2.5, the weighted sum of the three generator loss functions is the final 
generator loss function. In the Keras code that we will present, all the weights are 
set to 1.0, except for the entropy loss which is set to 10.0. In Equation 6.2.1 to Equation 
6.2.5, i refers to the encoder and GAN group id or level. In the original paper, the 
network is first trained independently and then jointly. During independent training, 
the encoder is trained first. During joint training, both real and fake data are used.

The implementation of the StackedGAN generator and discriminator in Keras 
requires few changes to provide auxiliary points to access the intermediate features. 
Figure 6.2.7 shows the generator Keras model. Listing 6.2.2 illustrates the function 
that builds two generators (gen0 and gen1) corresponding to Generator0 and 
Generator1. The gen1 generator is made of three Dense layers with label and the noise 
code z1f as inputs. The third layer generates the fake f1f feature. The gen0 generator is 
similar to other GAN generators that we've presented and can be instantiated using 
the generator builder in gan.py:

# gen0: feature1 + z0 to feature0 (image)
gen0 = gan.generator(feature1, image_size, codes=z0)

The gen0 input is f1 features and the noise code z0. The output is the generated fake 
image, xf:
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Figure 6.2.7: A StackedGAN Generator model in Keras

Listing 6.2.2, stackedgan-mnist-6.2.1.py shows us generator implementation 
in Keras:

def build_generator(latent_codes, image_size, feature1_dim=256):
    """Build Generator Model sub networks

    Two sub networks: 1) Class and noise to feature1 (intermediate 
feature)
    2) feature1 to image

    # Arguments
        latent_codes (Layers): discrete code (labels), noise and 
feature1 features
        image_size (int): Target size of one side (assuming square 
image)
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        feature1_dim (int): feature1 dimensionality

    # Returns
        gen0, gen1 (Models): Description below
    """

    # Latent codes and network parameters
    labels, z0, z1, feature1 = latent_codes
    # image_resize = image_size // 4
    # kernel_size = 5
    # layer_filters = [128, 64, 32, 1]

    # gen1 inputs
    inputs = [labels, z1]      # 10 + 50 = 62-dim
    x = concatenate(inputs, axis=1)
    x = Dense(512, activation='relu')(x)
    x = BatchNormalization()(x)
    x = Dense(512, activation='relu')(x)
    x = BatchNormalization()(x)
    fake_feature1 = Dense(feature1_dim, activation='relu')(x)
    # gen1: classes and noise (feature2 + z1) to feature1
    gen1 = Model(inputs, fake_feature1, name='gen1')

    # gen0: feature1 + z0 to feature0 (image)
    gen0 = gan.generator(feature1, image_size, codes=z0)

    return gen0, gen1

Figure 6.2.8 shows the discriminator Keras model. We provide the functions to build 
Discriminator0 and Discriminator1 (dis0 and dis1).The dis0 discriminator is similar 
to a GAN discriminator except for the feature vector input and the auxiliary network 
Q0 that recovers z0. The builder function in gan.py is used to create dis0:

dis0 = gan.discriminator(inputs, num_codes=z_dim)

The dis1 discriminator is made of a three-layer MLP as shown in Listing 6.2.3. 
The last layer discriminates between the real and fake f1. Q1 network shares the 
first two layers of dis1. Its third layer recovers z1:
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Figure 6.2.8: A StackedGAN Discriminator model in Keras

Listing 6.2.3, stackedgan-mnist-6.2.1.py shows the Discriminator1 implementation 
in Keras:

def build_discriminator(inputs, z_dim=50):
    """Build Discriminator 1 Model

    Classifies feature1 (features) as real/fake image and recovers
    the input noise or latent code (by minimizing entropy loss)

    # Arguments
        inputs (Layer): feature1
        z_dim (int): noise dimensionality

    # Returns
        dis1 (Model): feature1 as real/fake and recovered latent code
    """

    # input is 256-dim feature1
    x = Dense(256, activation='relu')(inputs)
    x = Dense(256, activation='relu')(x)
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    # first output is probability that feature1 is real
    f1_source = Dense(1)(x)
    f1_source = Activation('sigmoid', name='feature1_source') 
(f1_source)

    # z1 reonstruction (Q1 network)
    z1_recon = Dense(z_dim)(x)
    z1_recon = Activation('tanh', name='z1')(z1_recon)

    discriminator_outputs = [f1_source, z1_recon]
    dis1 = Model(inputs, discriminator_outputs, name='dis1')
    return dis1 

With all builder functions available, StackedGAN is assembled in Listing 6.2.4. Before 
training StackedGAN, the encoder is pretrained. Note that we already incorporated 
the three generator loss functions (adversarial, conditional, and entropy) in the 
adversarial model training. The Q-Network shares some common layers with 
the discriminator model. Therefore, its loss function is also incorporated in the 
discriminator model training.

Listing 6.2.4, stackedgan-mnist-6.2.1.py. Building StackedGAN in Keras:

def build_and_train_models():
    # load MNIST dataset
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    # reshape and normalize images
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
    x_test = x_test.astype('float32') / 255

    # number of labels
    num_labels = len(np.unique(y_train))
    # to one-hot vector
    y_train = to_categorical(y_train)
    y_test = to_categorical(y_test)

    model_name = "stackedgan_mnist"
    # network parameters
    batch_size = 64
    train_steps = 40000
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    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )
    z_dim = 50
    z_shape = (z_dim, )
    feature1_dim = 256
    feature1_shape = (feature1_dim, )

    # build discriminator 0 and Q network 0 models
    inputs = Input(shape=input_shape, name='discriminator0_input')
    dis0 = gan.discriminator(inputs, num_codes=z_dim)
    # [1] uses Adam, but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # loss fuctions: 1) probability image is real (adversarial0 loss)
    # 2) MSE z0 recon loss (Q0 network loss or entropy0 loss)
    loss = ['binary_crossentropy', 'mse']
    loss_weights = [1.0, 10.0]
    dis0.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    dis0.summary() # image discriminator, z0 estimator 

    # build discriminator 1 and Q network 1 models
    input_shape = (feature1_dim, )
    inputs = Input(shape=input_shape, name='discriminator1_input')
    dis1 = build_discriminator(inputs, z_dim=z_dim )
    # loss fuctions: 1) probability feature1 is real (adversarial1 
loss)
    # 2) MSE z1 recon loss (Q1 network loss or entropy1 loss)
    loss = ['binary_crossentropy', 'mse']
    loss_weights = [1.0, 1.0]
    dis1.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    dis1.summary() # feature1 discriminator, z1 estimator

    # build generator models
    feature1 = Input(shape=feature1_shape, name='feature1_input')
    labels = Input(shape=label_shape, name='labels')
    z1 = Input(shape=z_shape, name="z1_input")
    z0 = Input(shape=z_shape, name="z0_input")
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    latent_codes = (labels, z0, z1, feature1)
    gen0, gen1 = build_generator(latent_codes, image_size)
    gen0.summary() # image generator 
    gen1.summary() # feature1 generator

    # build encoder models
    input_shape = (image_size, image_size, 1)
    inputs = Input(shape=input_shape, name='encoder_input')
    enc0, enc1 = build_encoder((inputs, feature1), num_labels)
    enc0.summary() # image to feature1 encoder
    enc1.summary() # feature1 to labels encoder (classifier)
    encoder = Model(inputs, enc1(enc0(inputs)))
    encoder.summary() # image to labels encoder (classifier)

    data = (x_train, y_train), (x_test, y_test)
    train_encoder(encoder, data, model_name=model_name)

    # build adversarial0 model =
    # generator0 + discriminator0 + encoder0
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # encoder0 weights frozen
    enc0.trainable = False
    # discriminator0 weights frozen
    dis0.trainable = False
    gen0_inputs = [feature1, z0]
    gen0_outputs = gen0(gen0_inputs)
    adv0_outputs = dis0(gen0_outputs) + [enc0(gen0_outputs)]
    # feature1 + z0 to prob feature1 is 
    # real + z0 recon + feature0/image recon
    adv0 = Model(gen0_inputs, adv0_outputs, name="adv0")
    # loss functions: 1) prob feature1 is real (adversarial0 loss)
    # 2) Q network 0 loss (entropy0 loss)
    # 3) conditional0 loss
    loss = ['binary_crossentropy', 'mse', 'mse']
    loss_weights = [1.0, 10.0, 1.0]
    adv0.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    adv0.summary()

    # build adversarial1 model = 
    # generator1 + discriminator1 + encoder1
    # encoder1 weights frozen
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    enc1.trainable = False
    # discriminator1 weights frozen
    dis1.trainable = False
    gen1_inputs = [labels, z1]
    gen1_outputs = gen1(gen1_inputs)
    adv1_outputs = dis1(gen1_outputs) + [enc1(gen1_outputs)]
    # labels + z1 to prob labels are real + z1 recon + feature1 recon
    adv1 = Model(gen1_inputs, adv1_outputs, name="adv1")
    # loss functions: 1) prob labels are real (adversarial1 loss)
    # 2) Q network 1 loss (entropy1 loss)
    # 3) conditional1 loss (classifier error)
    loss_weights = [1.0, 1.0, 1.0]
    loss = ['binary_crossentropy', 'mse', 'categorical_crossentropy']
    adv1.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    adv1.summary()

    # train discriminator and adversarial networks
    models = (enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1)
    params = (batch_size, train_steps, num_labels, z_dim, model_name)
    train(models, data, params)

Finally, the training function bears a resemblance to a typical GAN training except 
that we only train one GAN at a time (that is, GAN1 then GAN0). The code is shown 
in Listing 6.2.5. It's worth noting that the training sequence is:

1.	 Discriminator1 and Q1 networks by minimizing the discriminator and entropy 
losses

2.	 Discriminator0 and Q0 networks by minimizing the discriminator and entropy 
losses

3.	 Adversarial1 network by minimizing the adversarial, entropy, and conditional 
losses

4.	 Adversarial0 network by minimizing the adversarial, entropy, and conditional 
losses

Listing 6.2.5, stackedgan-mnist-6.2.1.py shows us training the StackedGAN 
in Keras:

def train(models, data, params):
    """Train the discriminator and adversarial Networks

    Alternately train discriminator and adversarial networks by batch.
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    Discriminator is trained first with real and fake images,
    corresponding one-hot labels and latent codes.
    Adversarial is trained next with fake images pretending 
to be real,
    corresponding one-hot labels and latent codes.
    Generate sample images per save_interval.

    # Arguments
        models (Models): Encoder, Generator, Discriminator, 
Adversarial models
        data (tuple): x_train, y_train data
        params (tuple): Network parameters

    """
    # the StackedGAN and Encoder models
    enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1 = models
    # network parameters
    batch_size, train_steps, num_labels, z_dim, model_name = params
    # train dataset
    (x_train, y_train), (_, _) = data
    # the generator image is saved every 500 steps
    save_interval = 500

    # label and noise codes for generator testing
    z0 = np.random.normal(scale=0.5, size=[16, z_dim])
    z1 = np.random.normal(scale=0.5, size=[16, z_dim])
    noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    noise_params = [noise_class, z0, z1]
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_class, axis=1))

    for i in range(train_steps):
        # train the discriminator1 for 1 batch
        # 1 batch of real (label=1.0) and fake feature1 (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0, train_size,  
size=batch_size)
        real_images = x_train[rand_indexes]
        # real feature1 from encoder0 output
        real_feature1 = enc0.predict(real_images)
        # generate random 50-dim z1 latent code
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        real_z1 = np.random.normal(scale=0.5, size=[batch_size,  
z_dim])
        # real labels from dataset
        real_labels = y_train[rand_indexes]

        # generate fake feature1 using generator1 from
        # real labels and 50-dim z1 latent code
        fake_z1 = np.random.normal(scale=0.5, size=[batch_size,  
z_dim])
        fake_feature1 = gen1.predict([real_labels, fake_z1])

        # real + fake data
        feature1 = np.concatenate((real_feature1, fake_feature1))
        z1 = np.concatenate((fake_z1, fake_z1))

        # label 1st half as real and 2nd half as fake
        y = np.ones([2 * batch_size, 1])
        y[batch_size:, :] = 0

        # train discriminator1 to classify feature1 
        # as real/fake and recover
        # latent code (z1). real = from encoder1, 
        # fake = from genenerator1 
        # joint training using discriminator part of advserial1 loss
        # and entropy1 loss
        metrics = dis1.train_on_batch(feature1, [y, z1])
        # log the overall loss only (fr dis1.metrics_names)
        log = "%d: [dis1_loss: %f]" % (i, metrics[0])

        # train the discriminator0 for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # generate random 50-dim z0 latent code
        fake_z0 = np.random.normal(scale=0.5, size=[batch_size,  
z_dim])
        # generate fake images from real feature1 and fake z0
        fake_images = gen0.predict([real_feature1, fake_z0])

        # real + fake data
        x = np.concatenate((real_images, fake_images))
        z0 = np.concatenate((fake_z0, fake_z0))

        # train discriminator0 to classify image as real/fake 
and recover
        # latent code (z0)
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        # joint training using discriminator part of advserial0 loss
        # and entropy0 loss
        metrics = dis0.train_on_batch(x, [y, z0])
        # log the overall loss only (fr dis0.metrics_names)
        log = "%s [dis0_loss: %f]" % (log, metrics[0])

        # adversarial training 
        # generate fake z1, labels
        fake_z1 = np.random.normal(scale=0.5, size=[batch_size,  
z_dim])
        # input to generator1 is sampling fr real labels and
        # 50-dim z1 latent code
        gen1_inputs = [real_labels, fake_z1]

        # label fake feature1 as real
        y = np.ones([batch_size, 1])

        # train generator1 (thru adversarial) by 
        # fooling the discriminator
        # and approximating encoder1 feature1 generator
        # joint training: adversarial1, entropy1, conditional1
        metrics = adv1.train_on_batch(gen1_inputs, [y, fake_z1,  
real_labels])
        fmt = "%s [adv1_loss: %f, enc1_acc: %f]"
        # log the overall loss and classification accuracy
        log = fmt % (log, metrics[0], metrics[6])

        # input to generator0 is real feature1 and 
        # 50-dim z0 latent code
        fake_z0 = np.random.normal(scale=0.5, size=[batch_size,  
z_dim])
        gen0_inputs = [real_feature1, fake_z0]

        # train generator0 (thru adversarial) by 
        # fooling the discriminator
        # and approximating encoder1 image source generator
        # joint training: adversarial0, entropy0, conditional0
        metrics = adv0.train_on_batch(gen0_inputs, [y, fake_z0,  
real_feature1])
        # log the overall loss only
        log = "%s [adv0_loss: %f]" % (log, metrics[0])

        print(log)
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        if (i + 1) % save_interval == 0:
            if (i + 1) == train_steps:
                show = True
            else:
                show = False
            generators = (gen0, gen1)
            plot_images(generators,
                        noise_params=noise_params,
                        show=show,
                        step=(i + 1),
                        model_name=model_name)

    # save the modelis after training generator0 & 1
    # the trained generator can be reloaded for
    # future MNIST digit generation
    gen1.save(model_name + "-gen1.h5")
    gen0.save(model_name + "-gen0.h5")

Generator outputs of StackedGAN
After training the StackedGAN for 10,000 steps, the Generator0 and Generator1 models 
are saved on files. Stacked together, Generator0 and Generator1 can synthesize fake 
images conditioned on label and noise codes, z0 and z1.

The StackedGAN generator can be qualitatively validated by:

1.	 Varying the discrete labels from 0 to 9 with both noise codes, z0 and z1 
sampled from a normal distribution with a mean of 0.5 and standard 
-deviation of 1.0. The results are shown in Figure 6.2.9. We're able to see 
that the StackedGAN discrete code can control the digits produced by 
the generator:
python3 stackedgan-mnist-6.2.1.py 

--generator0=stackedgan_mnist-gen0.h5 

--generator1=stackedgan_mnist-gen1.h5 --digit=0

              to

python3 stackedgan-mnist-6.2.1.py 

--generator0=stackedgan_mnist-gen0.h5 

--generator1=stackedgan_mnist-gen1.h5 --digit=9
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2.	 Varying the first noise code, z0, as a constant vector from -4.0 to 4.0 for digits 
0 to 9 as shown as follows. The second noise code, z0, is set to zero vector. 
Figure 6.2.10 shows that the first noise code controls the thickness of the digit. 
For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py 

--generator0=stackedgan_mnist-gen0.h5 

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 –p0 

--digit=8

3.	 Varying the second noise code, z1, as a constant vector from -1.0 to 1.0 for 
digits 0 to 9 shown as follows. The first noise code, z0, is set to zero vector. 
Figure 6.2.11 shows that the second noise code controls the rotation (tilt) 
and to a certain extent the thickness of the digit. For example, for digit 8:

python3 stackedgan-mnist-6.2.1.py 

--generator0=stackedgan_mnist-gen0.h5 

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 –p1 

--digit=8

Figure 6.2.9: Images generated by StackedGAN as the discrete code is varied from 0 to 9. Both 0z  and 1z  have 
been sampled from a normal distribution with zero mean and 0.5 standard deviation.
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Figure 6.2.10: Images generated by using a StackedGAN as the first noise code, z0, varies from  
constant vector -4.0 to 4.0 for digits 0 to 9. z0 appears to control the thickness of each digit.

Figure 6.2.11: The images generated by StackedGAN as the second noise code, z1, varies from constant vector 
-1.0 to 1.0 for digits 0 to 9. z1 appears to control the rotation (tilt) and the thickness of stroke of each digit.
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Figures 6.2.9 to 6.2.11 demonstrate that the StackedGAN has provided additional 
control on the attributes of the generator outputs. The control and attributes are 
(label, which digit), (z0, digit thickness), and (z1, digit tilt). From this example, 
there are other possible experiments that we can control such as:

•	 Increasing the number of elements of the stack from the current 2
•	 Decreasing the dimension of codes z0 and z1, like in InfoGAN

Following figure shows the differences between the latent codes of InfoGAN and 
StackedGAN. The basic idea of disentangling codes is to put a constraint on the 
loss functions such that only specific attributes are affected by a code. Structure-wise, 
InfoGAN are easier to implement when compared to StackedGAN. InfoGAN is also 
faster to train:

Figure 6.2.12: Latent representations for different GANs

Conclusion
In this chapter, we've discussed how to disentangle the latent representations 
of GANs. Earlier on in the chapter, we discussed how InfoGAN maximizes the 
mutual information in order to force the generator to learn disentangled latent 
vectors. In the MNIST dataset example, InfoGAN uses three representations and 
a noise code as inputs. The noise represents the rest of the attributes in the form 
of an entangled representation. StackedGAN approaches the problem in a different 
way. It uses a stack of encoder-GANs to learn how to synthesize fake features 
and images. The encoder is first trained to provide a dataset of features. Then, 
the encoder-GANs are trained jointly to learn how to use the noise code to control 
attributes of the generator output.

In the next chapter, we will embark on a new type of GAN that is able to generate 
new data in another domain. For example, given an image of a horse, the GAN 
can perform an automatic transformation to an image of a zebra. The interesting 
feature of this type of GAN is that it can be trained without supervision.
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Cross-Domain GANs
In computer vision, computer graphics, and image processing a number of tasks 
involve translating an image from one form to another. As an example, colorization 
of grayscale images, converting satellite images to maps, changing the artwork style 
of one artist to another, making night-time images into daytime, and summer photos 
to winter, are just a few examples. These tasks are referred to as cross-domain 
transfer and will be the focus of this chapter. An image in the source domain 
is transferred to a target domain resulting in a new translated image.

A cross-domain transfer has a number of practical applications in the real world. 
As an example, in autonomous driving research, collecting road scene driving data 
is both time-consuming and expensive. In order to cover as many scene variations 
as possible in that example, the roads would be traversed during different weather 
conditions, seasons, and times giving us a large and varied amount of data. With the 
use of a cross-domain transfer, it's possible to generate new synthetic scenes that look 
real by translating existing images. For example, we may just need to collect road 
scenes in the summer from one area and gather road scenes in the winter from 
another place. Then, we can transform the summer images to winter and the winter 
images to summer. In this case, it reduces the number of tasks having to be done 
by half.

Generation of realistic synthesized images is an area that GANs excel at. Therefore, 
cross-domain translation is one of the applications of GANs. In this chapter, we're 
going to focus on a popular cross-domain GAN algorithm called CycleGAN [2]. 
Unlike other cross-domain transfer algorithms, such as a pix2pix [3], CycleGAN 
doesn't require aligned training images to work. In aligned images, the training data 
should be a pair of images made up of the source image and its corresponding target 
image. For example, a satellite image and the corresponding map derived from this 
image. CycleGAN only requires the satellite data images and maps. The maps may 
be from another satellite data and are not necessarily previously generated from the 
training data.
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In this chapter, we will explore the following:

•	 The principles of CycleGAN, including its implementation in Keras
•	 Example applications of CycleGAN, including the colorization of grayscale 

images using the CIFAR10 dataset and style transfer as applied on MNIST 
digits and Street View House Numbers (SVHN) [1] datasets

Principles of CycleGAN

Figure 7.1.1: Example of aligned image pair: left, original image and right, transformed image  
using a Canny edge detector. Original photos were taken by the author.

Translating an image from one domain to another is a common task in computer 
vision, computer graphics, and image processing. The preceding figure shows 
edge detection which is a common image translation task. In this example, we can 
consider the real photo (left) as an image in the source domain and the edge detected 
photo (right) as a sample in the target domain. There are many other cross-domain 
translation procedures that have practical applications such as:

•	 Satellite image to map
•	 Face image to emoji, caricature or anime
•	 Body image to the avatar
•	 Colorization of grayscale photos
•	 Medical scan to a real photo
•	 Real photo to an artist's painting



Chapter 7

[ 205 ]

There are many more examples of this in different fields. In computer vision and 
image processing, for example, we can perform the translation by inventing an 
algorithm that extracts features from the source image to translate it into the target 
image. Canny edge operator is an example of such an algorithm. However, in many 
cases, the translation is very complex to hand-engineer that it is almost impossible 
to find a suitable algorithm. Both the source and target domain distributions are 
high-dimensional and complex:

Figure 7.1.2: Example of not aligned image pair: left, a photo of real sunflowers along University  
Avenue, University of the Philippines and right, Sunflowers by Vincent Van Gogh at the National Gallery, 

London, UK. Original photos were taken by the author.

A workaround on the image translation problem is to use deep learning techniques. 
If we have a sufficiently large dataset from both the source and target domains, we 
can train a neural network to model the translation. Since the images in the target 
domain must be automatically generated given a source image, they must look like 
real samples from the target domain. GANs are a suitable network for such cross-
domain tasks. The pix2pix [3] algorithm is an example of a cross-domain algorithm.

The pix2pix bears a resemblance to Conditional GAN (CGAN) [4] that we discussed 
in Chapter 4, Generative Adversarial Networks (GANs). We can recall, that in conditional 
GANs, on top of the noise input, z, a condition such as in the form of a one-hot vector 
constrains the generator's output. For example, in the MNIST digit, if we want the 
generator to output the digit 8, the condition is the one-hot vector [0, 0, 0, 0, 0, 0, 0, 0, 
1, 0]. In pix2pix, the condition is the image to be translated. The generator's output is 
the translated image. The pix2pix is trained by optimizing the conditional GAN loss. 
To minimize blurring in the generated images, the L1 loss is also included.
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The main disadvantage of neural networks similar to pix2pix is the training input, and 
output images must be aligned. Figure 7.1.1 is an example of an aligned image pair. The 
sample target image is generated from the source. In most occasions, aligned image 
pairs are not available or expensive to generate from the source images, or we have no 
idea on how to generate the target image from the given source image. What we have 
are sample data from the source and target domains. Figure 7.1.2 is an example of data 
from the source domain (real photo) and the target domain (Van Gogh's art style) on 
the same sunflower subject. The source and target images are not necessarily aligned.

Unlike pix2pix, CycleGAN learns image translation as long as there are a sufficient 
amount and variation of source and target data. No alignment is needed. CycleGAN 
learns the source and target distributions and how to translate from source to target 
distribution from given sample data. No supervision is needed. In the context of 
Figure 7.1.2, we just need thousands of photos of real sunflowers and thousands 
of photos of Van Gogh's paintings of sunflowers. After training the CycleGAN, 
we're able to translate a photo of sunflowers to a Van Gogh's painting:

Figure 7.1.3: The CycleGAN model is made of four networks: Generator G, Generator F,  
Discriminator Dy, and Discriminator Dx
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The CycleGAN Model
Figure 7.1.3 shows the network model of the CycleGAN. The objective of 
the CycleGAN is to learn the function:

y' = G(x)          (Equation 7.1.1)

That generates fake images, y', in the target domain as a function of the real source 
image, x. Learning is unsupervised by capitalizing only on the available real images, 
x, in the source domain and real images, y, in the target domain.

Unlike regular GANs, CycleGAN imposes the cycle-consistency constraint. 
The forward cycle-consistency network ensures that the real source data can 
be reconstructed from the fake target data:

x' = F(G(x))          (Equation 7.1.2)

This is done by minimizing the forward cycle-consistency L1 loss:

( ) ( )( )~ 1dataforward cyc x p x F G x x−
 = −  

EL           (Equation 7.1.3)

The network is symmetric. The backward cycle-consistency network also attempts 
to reconstruct the real target data from the fake source data:

y' = G(F(y))          (Equation 7.1.4)

This is done by minimizing the backward cycle-consistency L1 loss:

( ) ( )( )~ 1databackward cyc y p y G F y y−
 = −  

EL           (Equation 7.1.5)

The sum of these two losses is known as cycle-consistency loss:

cyc forward cyc backward cyc− −= +L L L

( ) ( )( ) ( ) ( )( )~ ~1 1data datacyc x p x y p yF G x x G F y y   = − + −      
E EL           (Equation 7.1.6)

The cycle-consistency loss uses L1 or Mean Absolute Error (MAE) since it 
generally results in less blurry image reconstruction compared to L2 or Mean 
Square Error (MSE).
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Similar to other GANs, the ultimate objective of CycleGAN is for the generator 
G to learn how to synthesize fake target data, y', that can fool the discriminator, 
Dy, in the forward cycle. Since the network is symmetric, CycleGAN also wants 
the generator F to learn how to synthesize fake source data, x', that can fool the 
discriminator, Dx, in the backward cycle. Inspired by the better perceptual quality 
of Least Squares GAN (LSGAN) [5], as described in Chapter 5, Improved GANs, 
CycleGAN also uses MSE for the discriminator and generator losses. Recall that the 
difference of LSGAN from the original GAN is that the use of the MSE loss instead 
of a binary cross-entropy loss. CycleGAN expresses the generator-discriminator loss 
functions as:

( )
( ) ( )( ) ( ) ( )( )2 2

~ ~1
data data

D
forward GAN y p y yy x p xD y D G x− = − +E EL           (Equation 7.1.7)

( )
( ) ( )( )( )2~ 1

data

G
forward GAN x p yx D G x− = −EL           (Equation 7.1.8)

( )
( ) ( )( ) ( ) ( )( )2 2

~ ~1
data data

D
backward GAN x p x y p xx yD x D F y− = − +E EL           (Equation 7.1.9)

( )
( ) ( )( )( )2~ 1

data

G
backward GAN y p xy D F y− = −EL           (Equation 7.1.10)

( ) ( ) ( )D D D
GAN forward GAN backward GAN− −= +L L L           (Equation 7.1.11)

( ) ( ) ( )D D D
GAN forward GAN backward GAN− −= +L L L           (Equation 7.1.12)

The total loss of CycleGAN is shown as:

1 2GAN cycλ λ= +L L L           (Equation 7.1.13)

CycleGAN recommends the following weight values: 1 1.0λ =  and 2 10.0λ =  to give 
more importance to the cyclic consistency check.

The training strategy is similar to the vanilla GAN. Algorithm 7.1.1 summarizes the 
CycleGAN training procedure.
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Repeat for n training steps:

1.	 Minimize ( )D
forward GAN−L  by training the forward-cycle discriminator using 

real source and target data. A minibatch of real target data, y, is labeled  
1.0. A minibatch of fake target data, y' = G(x), is labelled 0.0.

2.	 Minimize ( )D
backward GAN−L  by training the backward-cycle discriminator using 

real source and target data. A minibatch of real source data, x, is labeled  
1.0. A minibatch of fake source data, x' = F(y), is labeled 0.0.

3.	 Minimize 
( )G
GANL  and cycL  by training the forward-cycle and backward-cycle 

generators in the adversarial networks. A minibatch of fake target data,  
y' = G(x), is labeled 1.0. A minibatch of fake source data, x' = F(y), is labeled 
1.0. The weights of discriminators are frozen.

Figure 7.1.4: During style transfer, the color composition may not be transferred successfully.  
To address this issue, the identity loss is added to the total loss function.
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Figure 7.1.5: The CycleGAN model with identity loss as shown on the left side of the image

In neural style transfer problems, the color composition may not be successfully 
transferred from source image to the fake target image. This problem is shown 
in Figure 7.1.4. To address this problem, CycleGAN proposes to include the 
forward and backward-cycle identity loss function:

( ) ( ) ( ) ( )~ ~1 1data dataidentity x p y px yF x x G y y   = − + −      E EL           (Equation 7.1.14)

The total loss of CycleGAN becomes:

1 2 3GAN cyc identityλ λ λ= + +L L L L           (Equation 7.1.15)

with 3 0.5λ = . The identity loss is also optimized during adversarial training. 
Figure 7.1.5 shows CycleGAN with identity loss.
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Implementing CycleGAN using Keras
Let us tackle a simple problem that CycleGAN can address. In Chapter 3, 
Autoencoders, we used an autoencoder to colorize grayscale images from the 
CIFAR10 dataset. We can recall that the CIFAR10 dataset is made of 50,000 trained 
data and 10,000 test data samples of 32 × 32 RGB images belonging to ten categories. 
We can convert all color images into grayscale using rgb2gray(RGB) as discussed in 
Chapter 3, Autoencoders.

Following on from that, we can use the grayscale train images as source domain 
images and the original color images as the target domain images. It's worth noting 
that although the dataset is aligned, the input to our CycleGAN is a random sample 
of color images and a random sample of grayscale images. Thus, our CycleGAN will 
not see the train data as aligned. After training, we'll use the test grayscale images 
to observe the performance of the CycleGAN:

Figure 7.1.6: The forward cycle generator G, implementation in Keras.  
The generator is a U-Network made of encoder and decoder.
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As discussed in the previous section, to implement the CycleGAN, we need to build 
two generators and two discriminators. The generator of CycleGAN learns the latent 
representation of the source input distribution and translates this representation into 
target output distribution. This is exactly what autoencoders do. However, typical 
autoencoders similar to the ones discussed in Chapter 3, Autoencoders, use an encoder 
that downsamples the input until the bottleneck layer at which point the process 
is reversed in the decoder. This structure is not suitable in some image translation 
problems since many low-level features are shared between the encoder and decoder 
layers. For example, in colorization problems, the form, structure, and edges of the 
grayscale image are the same as in the color image. To circumvent this problem, 
the CycleGAN generators use a U-Net [7] structure as shown in Figure 7.1.6.

In a U-Net structure, the output of the encoder layer en-i is concatenated with 
the output of the decoder layer di, where n = 4 is the number of encoder/decoder 
layers and i = 1, 2 and 3 are layer numbers that share information.

We should note that although the example uses n = 4, problems with a higher input/
output dimensions may require deeper encoder/decoder. The U-Net structure 
enables a free flow of feature-level information between encoder and decoder. 
An encoder layer is made of Instance Normalization(IN)-LeakyReLU-Conv2D 
while the decoder layer is made of IN-ReLU-Conv2D. The encoder/decoder layer 
implementation is shown in Listing 7.1.1 while the generator implementation is 
shown in Listing 7.1.2.

The complete code is available on GitHub:
https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Instance Normalization (IN) is Batch Normalization (BN) per sample of data 
(that is, IN is BN per image or per feature). In style transfer, it's important to 
normalize the contrast per sample not per batch. Instance normalization is 
equivalent to contrast normalization. Meanwhile, Batch normalization breaks 
contrast normalization.

Remember to install keras-contrib before using instance normalization:
$ sudo pip3 install git+https://www.github.com/keras-team/
keras-contrib.git

Listing 7.1.1, cyclegan-7.1.1.py shows us the encoder and decoder layers 
implementation in Keras:

def encoder_layer(inputs,

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU

    """

    conv = Conv2D(filters=filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization()(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    return x

def decoder_layer(inputs,
                  paired_inputs, 

                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU
    Arguments: (partial)
    inputs (tensor): the decoder layer input
    paired_inputs (tensor): the encoder layer output 
          provided by U-Net skip connection &
          concatenated to inputs.
    """

    conv = Conv2DTranspose(filters=filters,
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                           kernel_size=kernel_size,
                           strides=strides,
                           padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization()(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    x = concatenate([x, paired_inputs])
    return x

Listing 7.1.2, cyclegan-7.1.1.py. Generator implementation in Keras:

def build_generator(input_shape,
                    output_shape=None,
                    kernel_size=3,
                    name=None):
    """The generator is a U-Network made of a 4-layer encoder
    and a 4-layer decoder. Layer n-i is connected to layer i.

    Arguments:
    input_shape (tuple): input shape
    output_shape (tuple): output shape
    kernel_size (int): kernel size of encoder & decoder layers
    name (string): name assigned to generator model

    Returns:
    generator (Model):

    """

    inputs = Input(shape=input_shape)
    channels = int(output_shape[-1])
    e1 = encoder_layer(inputs,
                       32,
                       kernel_size=kernel_size,
                       activation='leaky_relu',
                       strides=1)
    e2 = encoder_layer(e1,
                       64,
                       activation='leaky_relu',
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                       kernel_size=kernel_size)
    e3 = encoder_layer(e2,
                       128,
                       activation='leaky_relu',
                       kernel_size=kernel_size)
    e4 = encoder_layer(e3,
                       256,
                       activation='leaky_relu',
                       kernel_size=kernel_size)

    d1 = decoder_layer(e4,
                       e3,
                       128,
                       kernel_size=kernel_size)
    d2 = decoder_layer(d1,
                       e2,
                       64,
                       kernel_size=kernel_size)
    d3 = decoder_layer(d2,
                       e1,
                       32,
                       kernel_size=kernel_size)
    outputs = Conv2DTranspose(channels,
                              kernel_size=kernel_size,
                              strides=1,
                              activation='sigmoid',
                              padding='same')(d3)

    generator = Model(inputs, outputs, name=name)

    return generator

The discriminator of CycleGAN is similar to vanilla GAN discriminator. The input 
image is downsampled several times (in this example, three times). The final layer 
is a Dense(1) layer which predicts the probability that the input is real. Each layer 
is similar to the encoder layer of the generator except that no IN is used. However, 
in large images, computing the image as real or fake with a single number turns 
out to be parameter inefficient and results in poor image quality for the generator.

The solution is to use PatchGAN [6] which divides the image into a grid of patches 
and use a grid of scalar values to predict the probability that the patches are real. 
The comparison between the vanilla GAN discriminator and a 2 × 2 PatchGAN 
discriminator is shown in Figure 7.1.7. In this example, the patches do not overlap 
and meet at their boundaries. However, in general, patches may overlap. 
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We should note that PatchGAN is not introducing a new type of GAN in 
CycleGAN. To improve the generated image quality, instead of having one output 
to discriminate, we have four outputs to discriminate if we used a 2 × 2 PatchGAN. 
There are no changes in the loss functions. Intuitively, this makes sense since the 
whole image will look more real if every patch or section of the image looks real:

Figure 7.1.7: A comparison between GAN and PatchGAN discriminators

Following figure shows the discriminator network as implemented in Keras. The 
illustration shows the discriminator determining how likely the input image or 
a patch is a color CIFAR10 image. Since the output image is small at only 32 × 32 
RGB, a single scalar representing that the image is real is sufficient. However, we 
also evaluate the results when PatchGAN is used. Listing 7.1.3 shows the function 
builder for the discriminator:

Figure 7.1.8: The target discriminator, Dy, implementation in Keras. The PatchGAN discriminator is shown on the right.



Chapter 7

[ 217 ]

Listing 7.1.3, cyclegan-7.1.1.py shows discriminator implementation in Keras:

def build_discriminator(input_shape,
                        kernel_size=3,
                        patchgan=True,
                        name=None):
    """The discriminator is a 4-layer encoder that outputs either
    a 1-dim or a n x n-dim patch of probability that input is real 

    Arguments:
    input_shape (tuple): input shape
    kernel_size (int): kernel size of decoder layers
    patchgan (bool): whether the output is a patch or just a 1-dim
    name (string): name assigned to discriminator model

    Returns:
    discriminator (Model):

    """

    inputs = Input(shape=input_shape)
    x = encoder_layer(inputs,
                      32,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      64,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      128,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      256,
                      kernel_size=kernel_size,
                      strides=1,
                      activation='leaky_relu',
                      instance_norm=False)

    # if patchgan=True use nxn-dim output of probability
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    # else use 1-dim output of probability
    if patchgan:
        x = LeakyReLU(alpha=0.2)(x)
        outputs = Conv2D(1,
                         kernel_size=kernel_size,
                         strides=1,
                         padding='same')(x)
    else:
        x = Flatten()(x)
        x = Dense(1)(x)
        outputs = Activation('linear')(x)

    discriminator = Model(inputs, outputs, name=name)

    return discriminator

Using the generator and discriminator builders, we are now able to build the 
CycleGAN. Listing 7.1.4 shows the builder function. In line with our discussion in 
the previous section, two generators, g_source = F and g_target = G, and two 
discriminators, d_source = Dx and d_target = Dy are instantiated. The forward 
cycle is x' = F(G(x)) = reco_source = g_source(g_target(source_input)). 
The backward cycle is y' = G(F(y)) = reco_target = g_target(g_source 
(target_input)).

The inputs to the adversarial model are the source and target data while the outputs 
are the outputs of Dx and Dy and the reconstructed inputs, x' and y.' The identity 
network is not used in this example due to the difference between the number 
of channels of the grayscale image and color image. We use the recommended 
loss weights of 1 1.0λ =  and 2 10.0λ =  for the GAN and cyclic consistency losses 
respectively. Similar to GANs in the previous chapters, we use RMSprop with 
a learning rate of 2e-4 and decay rate of 6e-8 for the optimizer of the discriminators. 
The learning and decay rate for the adversarial is half of the discriminator's.

Listing 7.1.4, cyclegan-7.1.1.py shows us the CycleGAN builder in Keras:

def build_cyclegan(shapes,
                   source_name='source',
                   target_name='target',
                   kernel_size=3,
                   patchgan=False,
                   identity=False
                   ):
    """Build the CycleGAN
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    1) Build target and source discriminators
    2) Build target and source generators
    3) Build the adversarial network

    Arguments:
    shapes (tuple): source and target shapes
    source_name (string): string to be appended on dis/gen models
    target_name (string): string to be appended on dis/gen models
    kernel_size (int): kernel size for the encoder/decoder or dis/gen
                       models
    patchgan (bool): whether to use patchgan on discriminator
    identity (bool): whether to use identity loss

    Returns:
    (list): 2 generator, 2 discriminator, and 1 adversarial models 

    """

    source_shape, target_shape = shapes
    lr = 2e-4
    decay = 6e-8
    gt_name = "gen_" + target_name
    gs_name = "gen_" + source_name
    dt_name = "dis_" + target_name
    ds_name = "dis_" + source_name

    # build target and source generators
    g_target = build_generator(source_shape,
                               target_shape,
                               kernel_size=kernel_size,
                               name=gt_name)
    g_source = build_generator(target_shape,
                               source_shape,
                               kernel_size=kernel_size,
                               name=gs_name)
    print('---- TARGET GENERATOR ----')
    g_target.summary()
    print('---- SOURCE GENERATOR ----')
    g_source.summary()

    # build target and source discriminators
    d_target = build_discriminator(target_shape,
                                   patchgan=patchgan,
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                                   kernel_size=kernel_size,
                                   name=dt_name)
    d_source = build_discriminator(source_shape,
                                   patchgan=patchgan,
                                   kernel_size=kernel_size,
                                   name=ds_name)
    print('---- TARGET DISCRIMINATOR ----')
    d_target.summary()
    print('---- SOURCE DISCRIMINATOR ----')
    d_source.summary()

    optimizer = RMSprop(lr=lr, decay=decay)
    d_target.compile(loss='mse',
                     optimizer=optimizer,
                     metrics=['accuracy'])
    d_source.compile(loss='mse',
                     optimizer=optimizer,
                     metrics=['accuracy'])
    # freeze the discriminator weights in the adversarial model
    d_target.trainable = False
    d_source.trainable = False

    # build the computational graph for the adversarial model
    # forward cycle network and target discriminator
    source_input = Input(shape=source_shape)
    fake_target = g_target(source_input)
    preal_target = d_target(fake_target)
    reco_source = g_source(fake_target)

    # backward cycle network and source discriminator
    target_input = Input(shape=target_shape)
    fake_source = g_source(target_input)
    preal_source = d_source(fake_source)
    reco_target = g_target(fake_source)

    # if we use identity loss, add 2 extra loss terms
    # and outputs
    if identity:
        iden_source = g_source(source_input)
        iden_target = g_target(target_input)
        loss = ['mse', 'mse', 'mae', 'mae', 'mae', 'mae']
        loss_weights = [1., 1., 10., 10., 0.5, 0.5]
        inputs = [source_input, target_input]
        outputs = [preal_source,
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                   preal_target,
                   reco_source,
                   reco_target,
                   iden_source,
                   iden_target]
    else:
        loss = ['mse', 'mse', 'mae', 'mae']
        loss_weights = [1., 1., 10., 10.]
        inputs = [source_input, target_input]
        outputs = [preal_source,
                   preal_target,
                   reco_source,
                   reco_target]

    # build adversarial model
    adv = Model(inputs, outputs, name='adversarial')
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    adv.compile(loss=loss,
                loss_weights=loss_weights,
                optimizer=optimizer,
                metrics=['accuracy'])
    print('---- ADVERSARIAL NETWORK ----')
    adv.summary()

    return g_source, g_target, d_source, d_target, adv

We follow the training procedure in Algorithm 7.1.1 from the previous section. 
Following listing shows the CycleGAN training. The minor difference between 
this training from the vanilla GAN is there are two discriminators to be optimized. 
However, there is only one adversarial model to optimize. For every 2000 steps, 
the generators save the predicted source and target images. We'll use a batch size 
of 32. We also tried a batch size of one, but the output quality is almost the same 
and takes a longer amount of time to train (43 ms/image for a batch size of one vs. 
3.6 ms/image for a batch size of 32 on an NVIDIA GTX 1060).

Listing 7.1.5, cyclegan-7.1.1.py shows us the CycleGAN training routine in Keras:

def train_cyclegan(models, data, params, test_params, test_generator):
    """ Trains the CycleGAN. 
    
    1) Train the target discriminator
    2) Train the source discriminator
    3) Train the forward and backward cyles of adversarial networks

    Arguments:
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    models (Models): Source/Target Discriminator/Generator,
                     Adversarial Model
    data (tuple): source and target training data
    params (tuple): network parameters
    test_params (tuple): test parameters
    test_generator (function): used for generating predicted target
                    and source images
    """

    # the models
    g_source, g_target, d_source, d_target, adv = models
    # network parameters
    batch_size, train_steps, patch, model_name = params
    # train dataset
    source_data, target_data, test_source_data, test_target_data = 
data

    titles, dirs = test_params

    # the generator image is saved every 2000 steps
    save_interval = 2000
    target_size = target_data.shape[0]
    source_size = source_data.shape[0]

    # whether to use patchgan or not
    if patch > 1:
        d_patch = (patch, patch, 1)
        valid = np.ones((batch_size,) + d_patch)
        fake = np.zeros((batch_size,) + d_patch)
    else:
        valid = np.ones([batch_size, 1])
        fake = np.zeros([batch_size, 1])

    valid_fake = np.concatenate((valid, fake))
    start_time = datetime.datetime.now()

    for step in range(train_steps):
        # sample a batch of real target data
        rand_indexes = np.random.randint(0, target_size,  
size=batch_size)
        real_target = target_data[rand_indexes]

        # sample a batch of real source data
        rand_indexes = np.random.randint(0, source_size,  
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size=batch_size)
        real_source = source_data[rand_indexes]
        # generate a batch of fake target data fr real source data
        fake_target = g_target.predict(real_source)

        # combine real and fake into one batch
        x = np.concatenate((real_target, fake_target))
        # train the target discriminator using fake/real data
        metrics = d_target.train_on_batch(x, valid_fake)
        log = "%d: [d_target loss: %f]" % (step, metrics[0])

        # generate a batch of fake source data fr real target data
        fake_source = g_source.predict(real_target)
        x = np.concatenate((real_source, fake_source))
        # train the source discriminator using fake/real data
        metrics = d_source.train_on_batch(x, valid_fake)
        log = "%s [d_source loss: %f]" % (log, metrics[0])

        # train the adversarial network using forward and backward
        # cycles. the generated fake source and target data attempts
        # to trick the discriminators
        x = [real_source, real_target]
        y = [valid, valid, real_source, real_target]
        metrics = adv.train_on_batch(x, y)
        elapsed_time = datetime.datetime.now() - start_time
        fmt = "%s [adv loss: %f] [time: %s]"
        log = fmt % (log, metrics[0], elapsed_time)
        print(log)
        if (step + 1) % save_interval == 0:
            if (step + 1) == train_steps:
                show = True
            else:
                show = False

            test_generator((g_source, g_target),
                           (test_source_data, test_target_data),
                           step=step+1,
                           titles=titles,
                           dirs=dirs,
                           show=show)

    # save the models after training the generators
    g_source.save(model_name + "-g_source.h5")
    g_target.save(model_name + "-g_target.h5")



Cross-Domain GANs

[ 224 ]

Finally, before we can use the CycleGAN to build and train functions, we have 
to perform some data preparation. The modules cifar10_utils.py and other_
utils.py load the CIFAR10 train and test data. Please refer to the source code 
for details of these two files. After loading, the train and test images are converted 
to grayscale to generate the source data and test source data.

Following listing shows how the CycleGAN is used to build and train a generator 
network (g_target) for colorization of grayscale images. Since CycleGAN is 
symmetric, we also build and train a second generator network (g_source) that 
converts from color to grayscale. Two CycleGAN colorization networks were 
trained. The first use discriminators with a scalar output similar to vanilla GAN. 
The second uses a 2 × 2 PatchGAN.

Listing 7.1.6, cyclegan-7.1.1.py shows us the CycleGAN for colorization problem:

def graycifar10_cross_colorcifar10(g_models=None):
    """Build and train a CycleGAN that can do grayscale <--> color
       cifar10 images
    """

    model_name = 'cyclegan_cifar10'
    batch_size = 32
    train_steps = 100000
    patchgan = True
    kernel_size = 3
    postfix = ('%dp' % kernel_size) if patchgan else  
('%d' % kernel_size)

    data, shapes = cifar10_utils.load_data()
    source_data, _, test_source_data, test_target_data = data
    titles = ('CIFAR10 predicted source images.',
              'CIFAR10 predicted target images.',
              'CIFAR10 reconstructed source images.',
              'CIFAR10 reconstructed target images.')
    dirs = ('cifar10_source-%s' % postfix, 'cifar10_target-%s' 
% postfix)

   # generate predicted target(color) and source(gray) images
    if g_models is not None:
        g_source, g_target = g_models
        other_utils.test_generator((g_source, g_target),
                                   (test_source_data, test_target_
data),
                                   step=0,
                                   titles=titles,
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                                   dirs=dirs,
                                   show=True)
        return

    # build the cyclegan for cifar10 colorization
    models = build_cyclegan(shapes,
                            "gray-%s" % postfix,
                            "color-%s" % postfix,
                            kernel_size=kernel_size,
                            patchgan=patchgan)
    # patch size is divided by 2^n since we downscaled the input
    # in the discriminator by 2^n (ie. we use strides=2 n times)
    patch = int(source_data.shape[1] / 2**4) if patchgan else 1
    params = (batch_size, train_steps, patch, model_name)
    test_params = (titles, dirs)
    # train the cyclegan
    train_cyclegan(models,
                   data,
                   params,
                   test_params,
                   other_utils.test_generator)

Generator outputs of CycleGAN
Figure 7.1.9 shows the colorization results of CycleGAN. The source images are 
from the test dataset. For comparison, we show the ground truth and the colorization 
results using a plain autoencoder described in Chapter 3, Autoencoders. Generally, all 
colorized images are perceptually acceptable. Overall, it seems that each colorization 
technique has both its own pros and cons. All colorization methods are not consistent 
with the right color of the sky and vehicle.

For example, the sky in the background of the plane (3rd row, 2nd column) is white. 
The autoencoder got it right, but the CycleGAN thinks it is light brown or blue. 
For the 6th row, 6th column, the boat on the dark sea had an overcast sky but was 
colorized with blue sky and blue sea by autoencoder and blue sea and white sky 
by CycleGAN without PatchGAN. Both predictions make sense in the real world. 
Meanwhile, the prediction of CycleGAN with PatchGAN is similar to the ground 
truth. On 2nd to the last row and 2nd column, no method was able to predict the 
red color of the car. On animals, both flavors of CycleGAN have closer colors to 
the ground truth.
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Since CycleGAN is symmetric, it also predicts the grayscale image given a color 
image. Figure 7.1.10 shows the color to grayscale conversion performed by the two 
CycleGAN variations. The target images are from the test dataset. Except for minor 
differences in the grayscale shades of some images, the predictions are generally 
accurate:

Figure 7.1.9: Colorization using different techniques. Shown are the ground truth, colorization using 
autoencoder (Chapter 3, Autoencoders,), colorization using CycleGAN with a vanilla GAN discriminator, 

and colorization using CycleGAN with PatchGAN discriminator. Best viewed in color. Original color photo 
can be found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/blob/master/chapter7-cross-domain-gan/README.md.
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Figure 7.1.10: Color (from Figure 7.1.9) to the grayscale conversion of CycleGAN

The reader can run the image translation by using the pretrained models for 
CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --cifar10_g_source=cyclegan_cifar10-g_source.h5 
--cifar10_g_target=cyclegan_cifar10-g_target.h5

CycleGAN on MNIST and SVHN datasets
We're now going to tackle a more challenging problem. Suppose we use MNIST 
digits in grayscale as our source data, and we want to borrow style from SVHN [1] 
which is our target data. The sample data in each domain are shown in Figure 7.1.11. 
We can reuse all the build and train functions for CycleGAN that were discussed in 
the previous section to perform style transfer. The only difference is we have to add 
routines for loading MNIST and SVHN data. SVHN dataset can be found at http://
ufldl.stanford.edu/housenumbers/.
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We introduce module mnist_svhn_utils.py to help us with this task. Listing 7.1.7 
shows the initialization and training of the CycleGAN for cross-domain transfer. 
The CycleGAN structure is same as in the previous section except that we use 
a kernel size of 5 since the two domains are drastically different:

Figure 7.1.11: Two different domains with data that are not aligned. Original color photo can be  
found on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning- 

with-Keras/blob/master/chapter7-cross-domain-gan/README.md.

Remember to install keras-contrib before using instance 
normalization:
$ sudo pip3 install git+https://www.github.com/keras-
team/keras-contrib.git

Listing 7.1.7, cyclegan-7.1.1.py shows us the CycleGAN for cross-domain style 
transfer between MNIST and SVHN:

def mnist_cross_svhn(g_models=None):
    """Build and train a CycleGAN that can do mnist <--> svhn
    """

    model_name = 'cyclegan_mnist_svhn'
    batch_size = 32
    train_steps = 100000
    patchgan = True
    kernel_size = 5
    postfix = ('%dp' % kernel_size) if patchgan else ('%d' % kernel_
size)

    data, shapes = mnist_svhn_utils.load_data()
    source_data, _, test_source_data, test_target_data = data
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    titles = ('MNIST predicted source images.',
              'SVHN predicted target images.',
              'MNIST reconstructed source images.',
              'SVHN reconstructed target images.')
    dirs = ('mnist_source-%s' % postfix, 'svhn_target-%s' % postfix)

    # genrate predicted target(svhn) and source(mnist) images
    if g_models is not None:
        g_source, g_target = g_models
        other_utils.test_generator((g_source, g_target),
                                   (test_source_data, test_ 
target_data),
                                   step=0,
                                   titles=titles,
                                   dirs=dirs,
                                   show=True)
        return

    # build the cyclegan for mnist cross svhn
    models = build_cyclegan(shapes,
                            "mnist-%s" % postfix,
                            "svhn-%s" % postfix,
                            kernel_size=kernel_size,
                            patchgan=patchgan)
    # patch size is divided by 2^n since we downscaled the input
    # in the discriminator by 2^n (ie. we use strides=2 n times)
    patch = int(source_data.shape[1] / 2**4) if patchgan else 1
    params = (batch_size, train_steps, patch, model_name)
    test_params = (titles, dirs)
    # train the cyclegan
    train_cyclegan(models,
                   data,
                   params,
                   test_params,
                   other_utils.test_generator)

The results for transferring the MNIST from the test dataset to SVHN are shown 
in Figure 7.1.12. The generated images have the style of SVHN, but the digits are 
not completely transferred. For example, on the 4th row, digits 3, 1, and 3 are stylized 
by CycleGAN. However, on the 3rd row, digits 9, 6, and 6 are stylized as 0, 6, 01, 0, 65, 
and 68 for the CycleGAN without and with PatchGAN respectively.

The results of the backward cycle are shown in Figure 7.1.13. In this case, the target 
images are from the SVHN test dataset. The generated images have the style of 
MNIST, but the digits are not correctly translated. For example, on the 1st row, the 
digits 5, 2, and 210 are stylized as 7, 7, 8, 3, 3, and 1 for the CycleGAN without and 
with PatchGAN respectively. 
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In the case of PatchGAN, the output 1 is understandable given the predicted MNIST 
digit is constrained to one digit. There are somehow correct predictions like in 2nd 
row last 3 columns of the SVHN digits, 6, 3, and 4 are converted to 6, 3, and 6 by 
CycleGAN without PatchGAN. However, the outputs on both flavors of CycleGAN 
are consistently single digit and recognizable.

The problem exhibited in the conversion from MNIST to SVHN where a digit in 
the source domain is translated to another digit in the target domain is called label 
flipping [8]. Although the predictions of CycleGAN are cycle-consistent, they are 
not necessarily semantic consistent. The meaning of digits is lost during translation. 
To address this problem, Hoffman [8] introduced an improved CycleGAN called 
CyCADA (Cycle-Consistent Adversarial Domain Adaptation). The difference is the 
additional semantic loss term ensures that the prediction is not only cycle-consistent 
but also sematic-consistent:

Figure 7.1.12: Style transfer of test data from the MNIST domain to SVHN. Original color photo can be found 
on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md.
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Figure 7.1.13: Style transfer of test data from SVHN domain to MNIST. Original color photo can be found  
on the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md.
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Figure 7.1.14: Forward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target).  
The reconstructed source is similar to the original source. Original color photo can be found on the book 
GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/ 

master/chapter7-cross-domain-gan/README.md.
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Figure 7.1.15: The backward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target).  
The reconstructed target is not entirely similar to the original target. Original color photo can be found on 

the book GitHub repository, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/
blob/master/chapter7-cross-domain-gan/README.md.

In Figure 7.1.3, CycleGAN is described to be cycle consistent. In other words, given 
source x, CycleGAN reconstructs the source in the forward cycle as x'. In addition, 
given target y, CycleGAN reconstructs the target in the backward cycle as y'. 
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Figure 7.1.14 shows CycleGAN reconstructing MNIST digits in the forward cycle. 
The reconstructed MNIST digits are almost identical with the source MNIST digits. 
Figure 7.1.15 shows the CycleGAN reconstructing SVHN digits in the backward 
cycle. Many target images are reconstructed. Some digits are clearly the same 
such as the 2nd row last 2 columns (3 and 4). While some are the same but blurred 
like 1st row first 2 columns (5 and 2). Some digits are transformed to another digit 
although the style remains like 2nd row first two columns (from 33 and 6 to 1 and 
an unrecognizable digit).

On a personal note, I encourage you to run the image translation by using the 
pretrained models of CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --mnist_svhn_g_source=cyclegan_mnist_svhn-g_
source.h5 --mnist_svhn_g_target=cyclegan_mnist_svhn-g_target.h5

Conclusion
In this chapter, we've discussed CycleGAN as an algorithm that can be used for 
image translation. In CycleGAN, the source and target data are not necessarily 
aligned. We demonstrated two examples, grayscale ↔ color, and MNIST ↔ SVHN. 
Though there are many other possible image translations that CycleGAN can 
perform.

In the next chapter, we'll embark on another type of generative model, Variational 
AutoEncoders (VAEs). VAEs have a similar objective of learning how to generate 
new images (data). They focus on learning the latent vector modeled as a Gaussian 
distribution. We'll demonstrate other similarities in the problem being addressed 
by GANs in the form of conditional VAEs and the disentangling of latent 
representations in VAEs.
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Variational Autoencoders 
(VAEs)

Similar to Generative Adversarial Networks (GANs) that we've discussed in 
the previous chapters, Variational Autoencoders (VAEs) [1] belong to the family 
of generative models. The generator of VAE is able to produce meaningful outputs 
while navigating its continuous latent space. The possible attributes of the decoder 
outputs are explored through the latent vector.

In GANs, the focus is on how to arrive at a model that approximates the input 
distribution. VAEs attempt to model the input distribution from a decodable 
continuous latent space. This is one of the possible underlying reasons why 
GANs are able to generate more realistic signals when compared to VAEs. For 
example, in image generation, GANs are able to produce more realistic looking 
images while VAEs in comparison generate images that are less sharp.

Within VAEs, the focus is on the variational inference of latent codes. 
Therefore, VAEs provide a suitable framework for both learning and efficient 
Bayesian inference with latent variables. For example, VAEs with disentangled 
representations enable latent code reuse for transfer learning.

In terms of structure, VAEs bear a resemblance to an autoencoder. They are 
also made up of an encoder (also known as recognition or inference model) 
and a decoder (also known as a generative model). Both VAEs and autoencoders 
attempt to reconstruct the input data while learning the latent vector. However, 
unlike autoencoders, the latent space of VAEs is continuous, and the decoder itself 
is used as a generative model.
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In the same line of discussions on GANs that we discussed in the previous chapters, 
the VAEs decoder can also be conditioned. For example, in the MNIST dataset, we're 
able to specify the digit to produce given a one-hot vector. This class of conditional 
VAE is called CVAE [2]. VAE latent vectors can also be disentangled by including 
a regularizing hyperparameter on the loss function. This is called β -VAE [5]. For 
example, within MNIST, we're able to isolate the latent vector that determines the 
thickness or tilt angle of each digit.

The goal of this chapter is to present:

•	 The principles of VAEs
•	 An understanding of the reparameterization trick that facilitates the use 

of stochastic gradient descent on VAE optimization
•	 The principles of conditional VAE (CVAE) and β -VAE
•	 An understanding of how to implement VAEs within the Keras library

Principles of VAEs
In a generative model, we're often interested in approximating the true distribution 
of our inputs using neural networks:

( )~x P xθ           (Equation 8.1.1)

In the preceding equation, θ  are the parameters determined during training. For 
example, in the context of the celebrity faces dataset, this is equivalent to finding 
a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution 
can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested 
in finding ( ),P x zθ

, a joint distribution between inputs, x, and the latent variables, z. 
The latent variables are not part of the dataset but instead encode certain properties 
observable from inputs. In the context of celebrity faces, these might be facial 
expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset,  
the latent variables may represent the digit and writing styles.

( ),P x zθ  is practically a distribution of input data points and their attributes.  
Pθ(x) can be computed from the marginal distribution:

( ) ( ),P x P x z dzθ θ= ∫           (Equation 8.1.2)
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In other words, considering all of the possible attributes, we end up with the 
distribution that describes the inputs. In celebrity faces, if we consider all the facial 
expressions, hairstyles, hair colors, gender, the distribution describing the celebrity 
faces is recovered. In the MNIST dataset, if we consider all of the possible digits, 
writing styles, and so on, we end up with the distribution of handwritten digits.

The problem is Equation 8.1.2 is intractable. the equation does not have an analytic 
form or an efficient estimator. It cannot be differentiated with respect to its 
parameters. Therefore, optimization by a neural network is not feasible.

Using Bayes theorem, we can find an alternative expression for Equation 8.1.2:

( ) ( ) ( )|P x P x z P z dzθ θ= ∫           (Equation 8.1.3)

P(z) is a prior distribution over z. It is not conditioned on any observations. If z is 
discrete and ( )|P x zθ

 is a Gaussian distribution, then ( )P xθ  is a mixture of Gaussians. 
If z is continuous, ( )P xθ  is an infinite mixture of Gaussians.

In practice, if we try to build a neural network to approximate ( )|P x zθ
 without 

a suitable loss function, it will just ignore z and arrive at a trivial solution ( )|P x zθ  = 
( )P xθ . Therefore, Equation 8.1.3 does not provide us with a good estimate of ( )P xθ .

Alternatively, Equation 8.1.2 can also be expressed as:

( ) ( ) ( )|P x P z x P x dzθ θ= ∫           (Equation 8.1.4)

However, ( )|P z xθ
 is also intractable. The goal of a VAEs is to find a tractable 

distribution that closely estimates ( )|P z xθ
.

Variational inference
In order to make ( )|P z xθ  tractable, VAE introduces the variational inference model 
(an encoder):

( ) ( )| |Q z x P z xφ θ≈           (Equation 8.1.5)

( )|Q z xφ  provides a good estimate of ( )|P z xθ . It is both parametric and tractable. 
( )|Q z xφ  can be approximated by deep neural networks by optimizing the 

parameters φ .
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Typically, ( )|Q z xφ  is chosen to be a multivariate Gaussian:

( ) ( ) ( )( )( )| ; ,Q z x z x diag xθ µ σ= N           (Equation 8.1.6)

Both mean, ( )xµ , and standard deviation, ( )xσ , are computed by the encoder neural 
network using the input data points. The diagonal matrix implies that the elements 
of z are independent.

Core equation
The inference model ( )|Q z xφ  generates latent vector z from input x. ( )|Q z xφ  is like 
the encoder in an autoencoder model. On the other hand, ( )|P x zθ  reconstructs the 
input from the latent code z. ( )|P x zθ  acts like the decoder in an autoencoder model. 
To estimate ( )P xθ , we must identify its relationship with ( )|Q z xφ  and ( )|P x zθ .

If ( )|Q z xφ  is an estimate of ( )|P z xθ , the Kullback-Leibler (KL) divergence 
determines the distance between these two conditional densities:

( ) ( )( ) ( ) ( )~| || | log | log |KL z QD Q z x P z x Q z x P z xφ θ φ θ
 = − E           (Equation 8.1.7)

Using Bayes theorem,

( ) ( ) ( )
( )

P x z P z
P z x

P x
θ θ

θ
θ

=           (Equation 8.1.8)

in Equation 8.1.7, 

( ) ( )( ) ( ) ( ) ( ) ( )~| || | log | log | log logKL z QD Q z x P z x Q z x P x z P z P xφ θ φ θ θ θ
 = − − + E    (Equation 8.1.9)

( )log P xθ  can be taken out the expectation since it is not dependent 
on ~z Q . Rearranging the preceding equation and recognizing that 

( ) ( ) ( ) ( )( )~ log | log |z Q KLQ z x P z D Q z x P zφ θ φ θ
 − = E :

( ) ( ) ( )( ) ( ) ( ) ( )( )~log | || | log | | ||KL z Q KLP x D Q z x P z x P x z D Q z x P zθ φ θ θ φ θ
 − = − E    (Equation 8.1.10)
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Equation 8.1.10 is the core of VAEs. The left-hand side is the term ( )P xθ  that we 
are maximizing less the error due to the distance of ( )|Q z xφ  from the true ( )|P z xθ .  
We can recall that the logarithm does not change the location of maxima (or 
minima). Given an inference model that provides a good estimate of ( )|P z xθ , 

( ) ( )( )| || |KLD Q z x P z xφ θ  is approximately zero. The first term, ( )|P x zθ , on the right-
hand side resembles a decoder that takes samples from the inference model to 
reconstruct the input. The second term is another distance. This time it's between 
( )|Q z xφ  and the prior ( )P zθ .

The left side of Equation 8.1.10 is also known as the variational lower bound or 
evidence lower bound (ELBO). Since the KL is always positive, ELBO is the lower 
bound of ( )log P xθ . Maximizing ELBO by optimizing the parameters φ  and θ  of 
the neural network means that:

•	 ( ) ( )( )| || | 0KLD Q z x P z xφ θ →  or the inference model is getting better in encoding 
the attributes of x in z

•	 ( )log |P x zθ  on the right-hand side of Equation 8.1.10 is maximized or the 
decoder model is getting better in reconstructing x from the latent vector z

Optimization
The right-hand side of Equation 8.1.10 has two important bits of information 
about the loss function of VAEs. The decoder term ( )~ log |z Q P x zθ

  E  means that the 
generator takes z samples from the output of the inference model to reconstruct the 
inputs. Maximizing this term implies that we minimize the Reconstruction Loss, RL .  
If the image (data) distribution is assumed to be Gaussian, then MSE can be used. 
If every pixel (data) is considered a Bernoulli distribution, then the loss function is 
a binary cross entropy.

The second term, ( ) ( )( )| ||KLD Q z x P zφ θ− , turns out to be straightforward to evaluate. 
From Equation 8.1.6, Qφ  is a Gaussian distribution. Typically, ( ) ( ) ( )0,P z P z Iθ = = N   
is also a Gaussian with zero mean and standard deviation equal to 1.0. The KL 
term simplifies to:

( ) ( )( ) ( ) ( ) ( )( )2 2 2

1

1| || 1 log
2

J
KL j j jj
D Q z x P zφ θ σ µ σ

=
− = + − −∑          (Equation 8.1.11)

Where J  is the dimensionality of z. Both jµ  and jσ  are functions of x computed 
through the inference model. To maximize KLD− , 1jσ →  and 0jµ → . The choice 
of ( ) ( )0,P z I= N  stems from the property of isotropic unit Gaussian which can be 
morphed to an arbitrary distribution given a suitable function. From Equation 8.1.11, 
the KL Loss KLL  is simply .
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For example, it was previously [6] demonstrated that an isotropic 
Gaussian could be morphed into a ring-shaped distribution using 
the function ( ) 10

z zg z z= + .

Readers can further explore the theory as presented in Luc Devroye's, 
Sample-Based Non-Uniform Random Variate Generation [7].

In summary, the VAE loss function is defined as:

VAE R KL= +L L L           (Equation 8.1.12)

Reparameterization trick

Figure 8.1.1: A VAE network with and without the reparameterization trick

On the left side of the preceding figure shows the VAE network. The encoder takes 
the input x, and estimates the mean, µ , and the standard deviation, σ , of the 
multivariate Gaussian distribution of the latent vector z. The decoder takes samples 
from the latent vector z to reconstruct the input as x� . This seems straightforward 
until the gradient updates happen during backpropagation.

Backpropagation gradients will not pass through the stochastic Sampling block. 
While it's fine to have stochastic inputs for neural networks, it's not possible for the 
gradients to go through a stochastic layer.



Chapter 8

[ 243 ]

The solution to this problem is to push out the Sampling process as the input 
as shown on the right side of Figure 8.1.1. Then, compute the sample as:

Sample µ σ= +∈           (Equation 8.1.13)

If ∈  and σ  are expressed in vector format, then ∈ σ  is element-wise multiplication. 
Using Equation 8.1.13, it appears as if sampling is directly coming from the 
latent space as originally intended. This technique is better known as the 
Reparameterization Trick.

With Sampling now happening at the input, the VAE network can be trained 
using the familiar optimization algorithms such as SGD, Adam, or RMSProp.

Decoder testing
After training the VAE network, the inference model including the addition and 
multiplication operator can be discarded. To generate new meaningful outputs, 
samples are taken from the Gaussian distribution used in generating ∈ . Following 
figure shows us how to test the decoder:

Figure 8.1.2: Decoder testing setup
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VAEs in Keras
The structure of VAE bears a resemblance to a typical autoencoder. The 
difference is mainly on the sampling of the Gaussian random variables in the 
reparameterization trick. Listing 8.1.1 shows the encoder, decoder, and VAE which 
are implemented using MLP. This code has also been contributed to the official 
Keras GitHub repository. For simplicity of the discussion, the latent vector z is 2-dim.

The encoder is just a two-layer MLP with the second layer generating the mean and 
log variance. The use of log variance is for simplicity in the computation of KL Loss 
and reparameterization trick. The third output of the encoder is the sampling of z 
using the reparameterization trick. We should note that in the sampling function, 

2 20.5loge σ σ σ= =  since 0σ>  given that it's the standard deviation of the Gaussian 
distribution.

The decoder is also a two-layer MLP that takes samples of z to approximate 
the inputs. Both the encoder and the decoder use an intermediate dimension 
with a size of 512.

The VAE network is simply both the encoder and the decoder joined together. 
Figures 8.1.3 to 8.1.5 show the encoder, decoder, and VAE models. The loss function 
is the sum of both the Reconstruction Loss and KL Loss. The VAE network has good 
results on the default Adam optimizer. The total number of parameters of the VAE 
network is 807,700.

The Keras code for VAE MLP has pretrained weights. To test, we need to run:

$ python3 vae-mlp-mnist-8.1.1.py --weights=vae_mlp_mnist.h5

The complete code can be found on the following link: https://
github.com/PacktPublishing/Advanced-Deep-Learning-
with-Keras.

Listing 8.1.1, vae-mlp-mnist-8.1.1.py shows us the Keras code of VAE using MLP 
layers:

# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
    z_mean, z_log_var = args 

    batch = K.shape(z_mean)[0]
    # K is the keras backend
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon

# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50

# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs) 

z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x) 

# use reparameterization trick to push the sampling out as input
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, 
z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)

# instantiate vae model
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outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')
 

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    help_ = "Load h5 model trained weights"
    parser.add_argument("-w", "--weights", help=help_)
    help_ = "Use mse loss instead of binary cross entropy (default)"
    parser.add_argument("-m",
                        "--mse",
                        help=help_, action='store_true')
    args = parser.parse_args()
    models = (encoder, decoder)
    data = (x_test, y_test)
    # VAE loss = mse_loss or xent_loss + kl_loss
    if args.mse:
        reconstruction_loss = mse(inputs, outputs)
    else:
        reconstruction_loss = binary_crossentropy(inputs,
                                                  outputs)
    reconstruction_loss *= original_dim
    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    kl_loss *= -0.5
    vae_loss = K.mean(reconstruction_loss + kl_loss)
    vae.add_loss(vae_loss)
    vae.compile(optimizer='adam')
    vae.summary()
    plot_model(vae,
               to_file='vae_mlp.png',
               show_shapes=True)

    if args.weights:
        vae = vae.load_weights(args.weights)
    else:
        # train the autoencoder
        vae.fit(x_train,
                epochs=epochs,
                batch_size=batch_size,
                validation_data=(x_test, None))
        vae.save_weights('vae_mlp_mnist.h5')

    plot_results(models,
                 data,
                 batch_size=batch_size,
                 model_name="vae_mlp")
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Figure 8.1.3: The encoder models of VAE MLP

Figure 8.1.4: The decoder model of VAE MLP

Figure 8.1.5: The VAE model using MLP
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Figure 8.1.6 shows the continuous space of latent vector after 50 epochs using plot_
results(). For simplicity, the function is not shown here but can be found in the 
rest of the code of vae-mlp-mnist-8.1.1.py. The function plots two images, the 
test dataset labels (Figure 8.1.6) and the sample generated digits (Figure 8.1.7) both 
as a function of z. Both plots demonstrate how the latent vector determines the 
attributes of the generated digits.

Navigating through the continuous space will always result in an output that bears 
a resemblance to the MNIST digits. For example, the region of digit 9 is close to 
the region of digit 7. Moving from 9 near the center to the left morphs the digit 
to 7. Moving from the center downward changes the generated digits from 3 to 8 
and finally to 1. The morphing of the digits is more evident in Figure 8.1.7 which 
is another way of interpreting Figure 8.1.6.

In Figure 8.1.7, instead of colorbar, the generator output is displayed. The 
distribution of digits in the latent space is shown. It can be observed that all the 
digits are represented. Since the distribution is dense near the center, the change is 
rapid in the middle and slow as the mean values get bigger. We need to remember 
that Figure 8.1.7 is a reflection of Figure 8.1.6. For example, digit 0 is on the top right 
quadrant on both figures while digit 1 is on the lower right quadrant.

There are some unrecognizable digits in Figure 8.1.7, especially on the top left 
quadrant. From the following figure, it can be observed that this region is mostly 
empty and far away from the center:

Figure 8.1.6: The latent vector mean values for the test dataset (VAE MLP). The colorbar shows the 
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository: 
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae


Chapter 8

[ 249 ]

Figure 8.1.7: The digits generated as a function of latent vector mean values (VAE MLP).  
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.6.

Using CNNs for VAEs
In the original paper Auto-encoding Variational Bayes [1], the VAE network was 
implemented using MLP, which is similar to what we covered in the previous 
section. In this section, we'll demonstrate that using a CNN will result in a significant 
improvement in the quality of the digits produced and a remarkable reduction in the 
number of parameters down to 134,165.

Listing 8.1.3 shows the encoder, decoder, and VAE network. This code was also 
contributed to the official Keras GitHub repository. For conciseness, some lines 
of code that are similar to the MLP are no longer shown. The encoder is made of two 
layers of CNNs and two layers of MLPs in order to generate the latent code. The 
encoder output structure is similar to the MLP implementation seen in the previous 
section. The decoder is made up of one layer of MLP and three layers of transposed 
CNNs. Figures 8.1.8 to 8.1.10 show the encoder, decoder, and VAE models. For VAE 
CNN, RMSprop will result in a lower loss than Adam.
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The Keras code for VAE CNN has pre-trained weights. To test, we need to run:

$ python3 vae-cnn-mnist-8.1.2.py --weights=vae_cnn_mnist.h5

Listing 8.1.3, vae-cnn-mnist-8.1.2.py shows us the Keras code of VAE using  
CNN layers:

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

# VAE mode = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs 

for i in range(2):
    filters *= 2
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               activation='relu',
               strides=2,
               padding='same')(x) 

# shape info needed to build decoder model
shape = K.int_shape(x)

# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, 
z_log_var])
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# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_cnn_encoder.png', show_shapes=True)

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(latent_
inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)
 

for i in range(2): 
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        activation='relu',
                        strides=2,
                        padding='same')(x)
    filters //= 2

outputs = Conv2DTranspose(filters=1,
                    kernel_size=kernel_size,
                    activation='sigmoid',
                    padding='same',
                    name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_cnn_decoder.png', show_shapes=True)

# instantiate vae model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
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Figure 8.1.8: The encoder of VAE CNN

Figure 8.1.9: The decoder of VAE CNN
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Figure 8.1.10: The VAE model using CNNs

Figure 8.1.11: The latent vector mean values for the test dataset (VAE CNN). The colorbar shows the 
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository: 
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://gitHub.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Preceding figure shows the continuous latent space of a VAE using the CNN 
implementation after 30 epochs. The region where each digit is assigned may 
be different, but the distribution is roughly the same. Following figure shows 
us the output of the generative model. Qualitatively, there are fewer digits that 
are ambiguous as compared to Figure 8.1.7 with the MLP implementation:

Figure 8.1.12: The digits generated as a function of latent vector mean values (VAE CNN).  
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.11.

Conditional VAE (CVAE)
Conditional VAE [2] is similar to the idea of CGAN. In the context of the MNIST 
dataset, if the latent space is randomly sampled, VAE has no control over which 
digit will be generated. CVAE is able to address this problem by including 
a condition (a one-hot label) of the digit to produce. The condition is imposed 
on both the encoder and decoder inputs.

Formally, the core equation of VAE in Equation 8.1.10 is modified to include the 
condition c:



Chapter 8

[ 255 ]

( ) ( ) ( )( ) ( ) ( ) ( )( )~log | | , || | , log | , | , || |KL z Q KLP x c D Q z x c P z x c P x z c D Q z x c P z cθ φ θ θ φ θ
 − = − E      (Equation 8.2.1)

Similar to VAEs, Equation 8.2.1 means that if we want to maximize the output 
conditioned on c, ( )|P x cθ

, then the two loss terms must be minimized:

•	 Reconstruction loss of the decoder given both the latent vector and the 
condition.

•	 KL loss between the encoder given both the latent vector and the condition 
and the prior distribution given the condition. Similar to a VAE, we typically 
choose ( ) ( ) ( )| | 0,P z c P z c Iθ = = N .

Listing 8.2.1, cvae-cnn-mnist-8.2.1.py shows us the Keras code of CVAE using 
CNN layers. In the code that is highlighted showcases the changes made to support 
CVAE:

# compute the number of labels

num_labels = len(np.unique(y_train))

# network parameters

input_shape = (image_size, image_size, 1)

label_shape = (num_labels, )

batch_size = 128

kernel_size = 3

filters = 16

latent_dim = 2

epochs = 30

# VAE model = encoder + decoder

# build encoder model

inputs = Input(shape=input_shape, name='encoder_input')

y_labels = Input(shape=label_shape, name='class_labels')

x = Dense(image_size * image_size)(y_labels)

x = Reshape((image_size, image_size, 1))(x)

x = keras.layers.concatenate([inputs, x])

for i in range(2):

    filters *= 2

    x = Conv2D(filters=filters,

               kernel_size=kernel_size,

               activation='relu',

               strides=2,

               padding='same')(x) 

# shape info needed to build decoder model
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shape = K.int_shape(x)

# generate latent vector Q(z|X)

x = Flatten()(x)

x = Dense(16, activation='relu')(x)

z_mean = Dense(latent_dim, name='z_mean')(x)

z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input

# note that "output_shape" isn't necessary with the TensorFlow backend

z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, 
z_log_var])

# instantiate encoder model

encoder = Model([inputs, y_labels], [z_mean, z_log_var, z], 
name='encoder')

encoder.summary()

plot_model(encoder, to_file='cvae_cnn_encoder.png', show_shapes=True)

# build decoder model

latent_inputs = Input(shape=(latent_dim,), name='z_sampling')

x = keras.layers.concatenate([latent_inputs, y_labels])

x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(x)

x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):

    x = Conv2DTranspose(filters=filters,

                        kernel_size=kernel_size,

                        activation='relu',

                        strides=2,

                        padding='same')(x)

    filters //= 2 

outputs = Conv2DTranspose(filters=1,

                          kernel_size=kernel_size,

                          activation='sigmoid',

                          padding='same',

                          name='decoder_output')(x)

# instantiate decoder model

decoder = Model([latent_inputs, y_labels], outputs, name='decoder')

decoder.summary()

plot_model(decoder, to_file='cvae_cnn_decoder.png', show_shapes=True)
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# instantiate vae model

outputs = decoder([encoder([inputs, y_labels])[2], y_labels])

cvae = Model([inputs, y_labels], outputs, name='cvae')

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    help_ = "Load h5 model trained weights"

    parser.add_argument("-w", "--weights", help=help_)

    help_ = "Use mse loss instead of binary cross entropy (default)"

    parser.add_argument("-m", "--mse", help=help_, action='store_
true')

    help_ = "Specify a specific digit to generate"

    parser.add_argument("-d", "--digit", type=int, help=help_)

    help_ = "Beta in Beta-CVAE. Beta > 1. Default is 1.0 (CVAE)"

    parser.add_argument("-b", "--beta", type=float, help=help_)

    args = parser.parse_args()

    models = (encoder, decoder)

    data = (x_test, y_test)

    if args.beta is None or args.beta < 1.0:

        beta = 1.0

        print("CVAE")

        model_name = "cvae_cnn_mnist"

    else:

        beta = args.beta

        print("Beta-CVAE with beta=", beta)

        model_name = "beta-cvae_cnn_mnist"

    # VAE loss = mse_loss or xent_loss + kl_loss

    if args.mse:

        reconstruction_loss = mse(K.flatten(inputs), 
K.flatten(outputs))

    else:

        reconstruction_loss = binary_crossentropy(K.flatten(inputs),

                                                  K.flatten(outputs))

    reconstruction_loss *= image_size * image_size

    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)

    kl_loss = K.sum(kl_loss, axis=-1)

    kl_loss *= -0.5 * beta

    cvae_loss = K.mean(reconstruction_loss + kl_loss)

    cvae.add_loss(cvae_loss)

    cvae.compile(optimizer='rmsprop')
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    cvae.summary()

    plot_model(cvae, to_file='cvae_cnn.png', show_shapes=True)

    if args.weights:

        cvae = cvae.load_weights(args.weights)

    else:

        # train the autoencoder

        cvae.fit([x_train, to_categorical(y_train)],

                 epochs=epochs,

                 batch_size=batch_size,

                 validation_data=([x_test, to_categorical(y_test)], 
None))

        cvae.save_weights(model_name + '.h5')

    if args.digit in range(0, num_labels):

        digit = np.array([args.digit])

    else:

        digit = np.random.randint(0, num_labels, 1)

    print("CVAE for digit %d" % digit)

    y_label = np.eye(num_labels)[digit]

    plot_results(models,

                 data,

                 y_label=y_label,

                 batch_size=batch_size,

                 model_name=model_name)
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Figure 8.2.1: The encoder in CVAE CNN. The input is now made of the  
concatenation of the VAE input and a conditioning label.
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Figure 8.2.2: The decoder in CVAE CNN. The input is now made of the concatenation  
of the z sampling and a conditioning label.

Figure 8.2.3: The CVAE model using a CNN. The input is now made of a VAE input and a conditioning label.
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Implementing CVAE requires a few modifications in the code of the VAE. For the 
CVAE, the VAE CNN implementation is used. Listing 8.2.1 highlights the changes 
made to the original code of VAE for MNIST digits. The encoder input is now a 
concatenation of original input image and its one-hot label. The decoder input is 
now a combination of the latent space sampling and the one-hot label of the image it 
should generate. The total number of parameters is 174, 437. The codes related to β
-VAE will be discussed in the next section of this chapter.

There are no changes in the loss function. However, the one-hot labels are supplied 
during training, testing, and plotting of results. Figures 8.2.1 to 8.2.3 show us the 
encoder, decoder, and CVAE models. The role of the conditioning label in the form 
of a one-hot vector is indicated.

Figure 8.2.4: The latent vector mean values for the test dataset (CVAE CNN). The colorbar shows the 
corresponding MNIST digit as a function of z. Color images can be found on the book GitHub repository: 
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://gitHub.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Figure 8.2.5: Digits 0 to 5 generated as a function of latent vector mean values and one-hot label  
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4.
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Figure 8.2.6: Digits 6 to 9 generated as a function of latent vector mean values and one-hot label  
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4.

In Figure 8.2.4, the distribution of mean per label is shown after 30 epochs. Unlike in 
both Figures 8.1.6 and 8.1.11 in the previous sections, each label is not concentrated 
on a region but distributed across the plot. This is expected since every sampling 
in the latent space should generate a specific digit. Navigating the latent space 
changes the attribute of that specific digit. For example, if the digit specified is 0, 
then navigating the latent space will still produce a 0 but the attributes, such as tilt 
angle, thickness, and other writing style aspects will be different.

These changes are more clearly shown in Figures 8.2.5 and 8.2.6. For ease of 
comparison, the range of values for the latent vector is the same as in Figure 8.2.4. 
Using the pretrained weights, a digit (for example, 0) can be generated by executing 
the command:

$ python3 cvae-cnn-mnist-8.2.1.py --weights=cvae_cnn_mnist.h5 --digit=0
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In Figures 8.2.5 and 8.2.6, it can be noticed that the width and roundness 
(if applicable) of each digit change as z[0] is traced from left to right. Meanwhile, 
the tilt angle and roundness (if applicable) of each digit change as z[1] is navigated 
from top to bottom. As we move away from the center of the distribution, the 
image of the digit starts to degrade. This is expected since the latent space is a circle.

Other noticeable variations in attributes may be digit specific. For example, 
the horizontal stroke (arm) for digit 1 becomes visible in the upper left quadrant. 
The horizontal stroke (crossbar) for digit 7 can be seen in the right quadrants only.

β -VAE: VAE with disentangled latent 
representations
In Chapter 6, Disentangled Representation GANs, the concept, and importance of 
the disentangled representation of latent codes were discussed. We can recall 
that a disentangled representation is where single latent units are sensitive to 
changes in single generative factors while being relatively invariant to changes 
in other factors [3]. Varying a latent code results to changes in one attribute of 
the generated output while the rest of the properties remain the same.

In the same chapter, InfoGANs [4] demonstrated to us that in the MNIST dataset, 
it is possible to control which digit to generate and the tilt and thickness of writing 
style. Observing the results in the previous section, it can be noticed that the VAE 
is intrinsically disentangling the latent vector dimensions to a certain extent. For 
example, looking at digit 8 in Figure 8.2.6, navigating z[1] from top to bottom 
decreases the width and roundness while rotating the digit clockwise. Increasing 
z[0] from left to right also decreases the width and roundness while rotating the digit 
counterclockwise. In other words, z[1] controls the clockwise rotation, z[0] affects the 
counterclockwise rotation, and both of them alter the width and roundness.

In this section, we'll demonstrate that a simple modification in the loss function of 
VAE forces the latent codes to disentangle further. The modification is the positive 
constant weight, 1β> , acting as a regularizer on the KL loss:

VAE R KLβ β− = +L L L           (Equation 8.3.1)

This variation of VAE is called β -VAE [5]. The implicit effect of β  is a tighter 
standard deviation. In other words, β  forces the latent codes in the posterior 
distribution, ( )|Q z xφ  to be independent.
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It is straightforward to implement β -VAE. For example, for the CVAE from the 
previous, the required modification is the extra beta factor in kl_loss.

    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    kl_loss *= -0.5 * beta

CVAE is a special case of β -VAE with 1β = . Everything else is the same. However, 
determining the value of β  requires some trial and error. There must be a careful 
balance between the reconstruction error and regularization for latent codes 
independence. The disentanglement is maximized at around . When the 
value of 8β> , the β -VAE is forced to learn one disentangled representation only 
while muting the other latent dimension:

Figure 8.3.1: The latent vector mean values for the test dataset (β -VAE with 7β = )  
Color images can be found on the book GitHub repository: https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/tree/master/chapter8-vae.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Figures 8.3.1 and 8.3.2 show the latent vector means for β -VAE with 7β =  and 10β = .  
With 7β = , the distribution has a smaller standard deviation when compared to 
CVAE. With 10β = , there is only the latent code that is learned. The distribution 
is practically shrunk to 1D with the first latent code z[0] ignored by the encoder 
and decoder:

Figure 8.3.2: The latent vector mean values for the test dataset (β -VAE with ) 
Color images can be found on the book GitHub repository: https://github.com/PacktPublishing/Advanced-

Deep-Learning-with-Keras/tree/master/chapter8-vae.

These observations are reflected in Figure 8.3.3. β -VAE with 7β =  has two latent 
codes that are practically independent. z[0] determines the tilt of the writing style. 
Meanwhile, z[1] specifies the width and roundness (if applicable) of the digits.  
For β -VAE with 10β = , z[0] is muted. Increasing z[0] does not alter the digit in 
a significant way. z[1] determines the tilt angle and width of the writing style.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Figure 8.3.3: Digits 0 to 3 generated as a function of latent vector mean values and one-hot label  
(β -VAE 1,7 10andβ = ). For ease of interpretation, the range of values for the mean  

is similar to Figure 8.3.1.
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The Keras code for β -VAE has pre-trained weights. To test β -VAE with 7β =  
generating digit 0, we need to run:

$ python3 cvae-cnn-mnist-8.2.1.py --beta=7 --weights=beta-cvae_cnn_mnist.
h5 --digit=0

Conclusion 
In this chapter, we've covered the principles of variational autoencoders (VAEs). 
As we learned in the principles of VAEs, they bear a resemblance to GANs in the 
aspect of both attempt to create synthetic outputs from latent space. However, it can 
be noticed that the VAE networks are much simpler and easier to train compared to 
GANs. It's becoming clear how conditional VAE and β -VAE are similar in concept to 
conditional GAN and disentangled representation GAN respectively.

VAEs have an intrinsic mechanism to disentangle the latent vectors. Therefore, 
building a β -VAE is straightforward. We should note however that interpretable 
and disentangled codes are important in building intelligent agents.

In the next chapter, we're going to focus on Reinforcement learning. Without any 
prior data, an agent learns by interacting with its world. We'll discuss how the 
agent can be rewarded for correct actions and punished for the wrong ones.
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Deep Reinforcement 
Learning

Reinforcement Learning (RL) is a framework that is used by an agent for decision-
making. The agent is not necessarily a software entity such as in video games. 
Instead, it could be embodied in hardware such as a robot or an autonomous 
car. An embodied agent is probably the best way to fully appreciate and utilize 
reinforcement learning since a physical entity interacts with the real-world and 
receives responses.

The agent is situated within an environment. The environment has a state that 
can be partially or fully observable. The agent has a set of actions that it can use 
to interact with its environment. The result of an action transitions the environment 
to a new state. A corresponding scalar reward is received after executing an action. 
The goal of the agent is to maximize the accumulated future reward by learning 
a policy that will decide which action to take given a state.

Reinforcement learning has a strong similarity to human psychology. Humans learn 
by experiencing the world. Wrong actions result in a certain form of penalty and 
should be avoided in the future, whilst actions which are right are rewarded and 
should be encouraged. This strong similarity to human psychology has convinced 
many researchers to believe that reinforcement learning can lead us towards 
Artificial Intelligence (AI).

Reinforcement learning has been around for decades. However, beyond simple 
world models, RL has struggled to scale. This is where Deep Learning (DL), 
came into play. It solved this scalability problem which opened up the era of Deep 
Reinforcement Learning (DRL), which is what we are going to focus on in this 
chapter. One of the notable examples in DRL is the work of DeepMind on agents 
that were able to surpass the best human performance on different video games. 
In this chapter, we discuss both RL and DRL.
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In summary, the goal of this chapter is to present:

•	 The principles of RL
•	 The Reinforcement Learning technique, Q-Learning
•	 Advanced topics including Deep Q-Network (DQN),  

and Double Q-Learning (DDQN)
•	 Instructions on how to implement RL on Python and DRL within Keras

Principles of reinforcement learning (RL)
Figure 9.1.1 shows the perception-action-learning loop that is used to describe RL. 
The environment is a soda can sitting on the floor. The agent is a mobile robot whose 
goal is to pick up the soda can. It observes the environment around it and tracks the 
location of the soda can through an onboard camera. The observation is summarized 
in a form of state which the robot will use to decide which action to take. The actions 
it takes may pertain to low-level control such as the rotation angle/speed of each 
wheel, rotation angle/speed of each joint of the arm, and whether the gripper is 
open or close.

Alternatively, the actions may be high-level control moves such as moving the robot 
forward/backward, steering with a certain angle, and grab/release. Any action that 
moves the gripper away from the soda receives a negative reward. Any action that 
closes the gap between the gripper location and the soda receives a positive reward. 
When the robot arm successfully picks up the soda can, it receives a big positive 
reward. The goal of RL is to learn the optimal policy that helps the robot to decide 
which action to take given a state to maximize the accumulated discounted reward:

Figure 9.1.1: The perception-action-learning loop in reinforcement learning
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Formally, the RL problem can be described as a Markov Decision Process (MDP). 
For simplicity, we'll assume a deterministic environment where a certain action 
in a given state will consistently result in a known next state and reward. In a later 
section of this chapter, we'll look at how to consider stochasticity. At timestep t:

•	 The environment is in a state st from the state space S  which may be 
discrete or continuous. The starting state is s0 while the terminal state is sT.

•	 The agent takes action at from the action space A  by obeying the policy, 
( )|t ta sπ . A  may be discrete or continuous.

•	 The environment transitions to a new state st+1 using the state transition 
dynamics ( )1 | ,t t ts s a+T . The next state is only dependent on the current state 
and action. T  is not known to the agent.

•	 The agent receives a scalar reward using a reward function, rt+1 = R(st,at) with 
:r × → RA S . The reward is only dependent on the current state and action. 

R is not known to the agent.

•	 Future rewards are discounted by kγ  where [ ]0,1γ ∈  and k is the future 
timestep.

•	 Horizon, H, is the number of timesteps, T, needed to complete one episode 
from s0 to sT.

The environment may be fully or partially observable. The latter is also known as 
a partially observable MDP or POMDP. Most of the time, it's unrealistic to fully 
observe the environment. To improve the observability, past observations are also 
taken into consideration with the current observation. The state comprises the 
sufficient observations about the environment for the policy to decide on which 
action to take. In Figure 9.1.1, this could be the 3D position of the soda can with 
respect to the robot gripper as estimated by the robot camera.

Every time the environment transitions to a new state, the agent receives a scalar 
reward, rt+1. In Figure 9.1.1, the reward could be +1 whenever the robot gets closer 
to the soda can, -1 whenever it gets farther, and +100 when it closes the gripper and 
successfully picks up the soda can. The goal of the agent is to learn an optimal policy 
π∗  that maximizes the return from all states:

targmax Rππ∗ =            (Equation 9.1.1)

The return is defined as the discounted cumulative reward, 0

T k
t t kk
R rγ +=
=∑ . It 

can be observed from Equation 9.1.1 that future rewards have lower weights when 
compared to  the immediate rewards since generally 1.0kγ <  where [ ]0,1γ ∈ .  
At the extremes, when 0γ = , only the immediate reward matters. When 1γ =   
future rewards have the same weight as the immediate reward.
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Return can be interpreted as a measure of the value of a given state by following 
an arbitrary policy, π :

( )
0

r
T

k
t t t k

k

V s Rπ γ +
=

= =∑           (Equation 9.1.2)

To put the RL problem in another way, the goal of the agent is to learn the optimal 
policy that maximizes V π  for all states s:

( )argmax V sπ
ππ∗ =          (Equation 9.1.3)

The value function of the optimal policy is simply V*. In Figure 9.1.1, the optimal 
policy is the one that generates the shortest sequence of actions that brings the robot 
closer and closer to the soda can until it has been fetched. The closer the state is to the 
goal state, the higher its value.

The sequence of events leading to the goal (or terminal state) can be modeled as the 
trajectory or rollout of the policy:

Trajectory = (s0a0r1s1,s1a1r2s2,...,sT-1aT-1rTsT)          (Equation 9.1.4)

If the MDP is episodic when the agent reaches the terminal state, sT, the state is 
reset to s0. If T is finite, we have a finite horizon. Otherwise, the horizon is infinite. 
In Figure 9.1.1, if the MDP is episodic, after collecting the soda can, the robot may 
look for another soda can to pick up and the RL problem repeats.

The Q value
An important question is that if the RL problem is to find π∗ , how does the agent 
learn by interacting with the environment? Equation 9.1.3 does not explicitly indicate 
the action to try and the succeeding state to compute the return. In RL, we find that 
it's easier to learn π∗  by using the Q value:

( ),aargmax Q s aπ∗ =           (Equation 9.2.1)
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Where:

( ) ( ),
a

V s maxQ s a∗ =           (Equation 9.2.2)

In other words, instead of finding the policy that maximizes the value for all states, 
Equation 9.2.1 looks for the action that maximizes the quality (Q) value for all states. 
After finding the Q value function, V* and hence π

∗
 are determined by Equation 9.2.2 

and 9.1.3 respectively.

If for every action, the reward and the next state can be observed, we can formulate 
the following iterative or trial and error algorithm to learn the Q value:

( ) ( ), ,
a

Q s a r maxQ s aγ
′

′ ′= +           (Equation 9.2.3)

For notational simplicity, both s' and a' are the next state and action respectively. 
Equation 9.2.3 is known as the Bellman Equation which is the core of the Q-Learning 
algorithm. Q-Learning attempts to approximate the first-order expansion of return or 
value (Equation 9.1.2) as a function of both current state and action.

From zero knowledge of the dynamics of the environment, the agent tries an action a, 
observes what happens in the form of reward, r, and next state, s'. ( )max ,

a
Q s a

′
′ ′  chooses 

the next logical action that will give the maximum Q value for the next state. With 
all terms in Equation 9.2.3 known, the Q value for that current state-action pair is 
updated. Doing the update iteratively will eventually learn the Q value function.

Q-Learning is an off-policy RL algorithm. It learns to improve the policy by not 
directly sampling experiences from that policy. In other words, the Q values are 
learned independently of the underlying policy being used by the agent. When the 
Q value function has converged, only then is the optimal policy determined using 
Equation 9.2.1.

Before giving an example on how to use Q-Learning, we should note that the agent 
must continually explore its environment while gradually taking advantage of 
what it has learned so far. This is one of the issues in RL – finding the right balance 
between Exploration and Exploitation. Generally, during the start of learning, the 
action is random (exploration). As the learning progresses, the agent takes advantage 
of the Q value (exploitation). For example, at the start, 90% of the action is random 
and 10% from Q value function, and by the end of each episode, this is gradually 
decreased. Eventually, the action is 10% random and 90% from Q value function.
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Q-Learning example
To illustrate the Q-Learning algorithm, we need to consider a simple deterministic 
environment, as shown in the following figure. The environment has six states. 
The rewards for allowed transitions are shown. The reward is non-zero in two cases. 
Transition to the Goal (G) state has +100 reward while moving into Hole (H) state 
has -100 reward. These two states are terminal states and constitute the end of one 
episode from the Start state:

Figure 9.3.1: Rewards in a simple deterministic world

To formalize the identity of each state, we need to use a (row, column) identifier as 
shown in the following figure. Since the agent has not learned anything yet about its 
environment, the Q-Table also shown in the following figure has zero initial values. 
In this example, the discount factor, 0.9γ = . Recall that in the estimate of current Q 
value, the discount factor determines the weight of future Q values as a function of 
the number of steps, . In Equation 9.2.3, we only consider the immediate future 
Q value, k = 1:

Figure 9.3.2: States in the simple deterministic environment and the agent's initial Q-Table
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Initially, the agent assumes a policy that selects a random action 90% of the time and 
exploits the Q-Table 10% of the time. Suppose the first action is randomly chosen and 
indicates a move in the right direction. Figure 9.3.3 illustrates the computation of the 
new Q value of state (0, 0) for a move to the right action. The next state is (0, 1). The 
reward is 0, and the maximum of all the next state's Q values is zero. Therefore, the 
Q value of state (0, 0) for a move to the right action remains 0.

To easily track the initial state and next state, we use different shades of gray on both 
the environment and the Q-Table–lighter gray for initial state and darker gray for the 
next state. In choosing the next action for the next state, the candidate actions are in 
the thicker border:

Figure 9.3.3: Assuming the action taken by the agent is a move to the right,  
the update on Q value of state (0, 0) is shown
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Figure 9.3.4: Assuming the action chosen by the agent is move down,  
the update on Q value of state (0, 1) is shown

Figure 9.3.5: Assuming the action chosen by the agent is a move to the right,  
the update on Q value of state (1, 1) is shown

Let's suppose that the next randomly chosen action is move down. Figure 9.3.4 shows 
no change in the Q value of state (0, 1) for the move down action. In Figure 9.3.5, 
the agent's third random action is a move to the right. It encountered the H and 
received a -100 reward. This time, the update is non-zero. The new Q value for the 
state (1, 1) is -100 for the move to the right direction. One episode has just finished, 
and the agent returns to the Start state.
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Figure 9.3.6: Assuming the actions chosen by the agent are two successive moves to the right,  
the update on Q value of state (0, 1) is shown

Let's suppose the agent is still in the exploration mode as shown in Figure 9.3.6. 
The first step it took for the second episode is a move to the right. As expected, the 
update is 0. However, the second random action it chose is also move to the right. 
The agent reached the G state and received a big +100 reward. The Q value for the 
state (0, 1) move to the right becomes 100. The second episode is done, and the agent 
goes back to the Start state.

Figure 9.3.7: Assuming the action chosen by the agent is a move to the right,  
the update on Q value of state (0, 0) is shown
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Figure 9.3.8: In this instance, the agent's policy decided to exploit the Q-Table to determine  
the action at states (0, 0) and (0, 1). The Q-Table suggests to move to the right for both states.

At the beginning of the third episode, the random action taken by the agent is a 
move to the right. The Q value of state (0, 0) is now updated with a non-zero value 
because the next state's possible actions have 100 as the maximum Q value. Figure 
9.3.7 shows the computation involved. The Q value of the next state (0, 1) ripples 
back to the earlier state (0, 0). It is like giving credit to the earlier states that helped 
in finding the G state.

The progress in Q-Table has been substantial. In fact, in the next episode, if for some 
reason the policy decided to exploit the Q-Table instead of randomly exploring the 
environment, the first action is to move to the right according to the computation 
in Figure 9.3.8. In the first row of the Q-Table, the action that results in maximum 
Q value is a move to the right. For the next state (0, 1), the second row of Q-Table 
suggests that the next action is still to move to the right. The agent has successfully 
reached the goal. The policy guided the agent on the right set of actions to achieve 
its goal.

If the Q-Learning algorithm continues to run indefinitely, the Q-Table will converge. 
The assumptions for convergence are the RL problem must be deterministic MDP 
with bounded rewards and all states are visited infinitely often.
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Q-Learning in Python
The environment and the Q-Learning discussed in the previous section can be 
implemented in Python. Since the policy is just a simple table, there is, at this 
point in time no need for Keras. Listing 9.3.1 shows q-learning-9.3.1.py, the 
implementation of the simple deterministic world (environment, agent, action, 
and Q-Table algorithms) using the QWorld class. For conciseness, the functions 
dealing with the user interface are not shown.

In this example, the environment dynamics is represented by self.transition_
table. At every action, self.transition_table determines the next state. The 
reward for executing an action is stored in self.reward_table. The two tables are 
consulted every time an action is executed by the step() function. The Q-Learning 
algorithm is implemented by update_q_table() function. Every time the agent 
needs to decide which action to take, it calls the act() function. The action may be 
randomly drawn or decided by the policy using the Q-Table. The percent chance that 
the action chosen is random is stored in the self.epsilon variable which is updated 
by update_epsilon() function using a fixed epsilon_decay.

Before executing the code in Listing 9.3.1, we need to run:

$ sudo pip3 install termcolor

To install termcolor package. This package helps in visualizing text outputs on the 
Terminal.

The complete code can be found on GitHub at: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

Listing 9.3.1, q-learning-9.3.1.py. A simple deterministic MDP with six states:

from collections import deque
import numpy as np
import argparse
import os
import time 

from termcolor import colored

class QWorld():
    def __init__(self):
        # 4 actions
        # 0 - Left, 1 - Down, 2 - Right, 3 - Up

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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        self.col = 4

        # 6 states
        self.row = 6 

        # setup the environment
        self.q_table = np.zeros([self.row, self.col])
        self.init_transition_table()
        self.init_reward_table()

        # discount factor
        self.gamma = 0.9

        # 90% exploration, 10% exploitation
        self.epsilon = 0.9
        # exploration decays by this factor every episode
        self.epsilon_decay = 0.9
        # in the long run, 10% exploration, 90% exploitation
        self.epsilon_min = 0.1

        # reset the environment
        self.reset()
        self.is_explore = True

    # start of episode
    def reset(self): 

        self.state = 0
        return self.state

    # agent wins when the goal is reached
    def is_in_win_state(self):
        return self.state == 2

    def init_reward_table(self):
        """
        0 - Left, 1 - Down, 2 - Right, 3 - Up
        ----------------
        | 0 | 0 | 100  |
        ----------------
        | 0 | 0 | -100 |
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        ----------------
        """
        self.reward_table = np.zeros([self.row, self.col])
        self.reward_table[1, 2] = 100.
        self.reward_table[4, 2] = -100.

    def init_transition_table(self):
        """
        0 - Left, 1 - Down, 2 - Right, 3 - Up
        -------------
        | 0 | 1 | 2 |
        -------------
        | 3 | 4 | 5 |
        -------------
        """
        self.transition_table = np.zeros([self.row, self.col], 
dtype=int)

        self.transition_table[0, 0] = 0
        self.transition_table[0, 1] = 3
        self.transition_table[0, 2] = 1
        self.transition_table[0, 3] = 0

        self.transition_table[1, 0] = 0
        self.transition_table[1, 1] = 4
        self.transition_table[1, 2] = 2
        self.transition_table[1, 3] = 1

        # terminal Goal state
        self.transition_table[2, 0] = 2
        self.transition_table[2, 1] = 2
        self.transition_table[2, 2] = 2
        self.transition_table[2, 3] = 2

        self.transition_table[3, 0] = 3
        self.transition_table[3, 1] = 3
        self.transition_table[3, 2] = 4
        self.transition_table[3, 3] = 0

        self.transition_table[4, 0] = 3
        self.transition_table[4, 1] = 4
        self.transition_table[4, 2] = 5
        self.transition_table[4, 3] = 1
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        # terminal Hole state
        self.transition_table[5, 0] = 5
        self.transition_table[5, 1] = 5
        self.transition_table[5, 2] = 5
        self.transition_table[5, 3] = 5

    # execute the action on the environment
    def step(self, action):
        # determine the next_state given state and action
        next_state = self.transition_table[self.state, action]
        # done is True if next_state is Goal or Hole
        done = next_state == 2 or next_state == 5
        # reward given the state and action
        reward = self.reward_table[self.state, action]
        # the enviroment is now in new state
        self.state = next_state
        return next_state, reward, done

    # determine the next action
    def act(self):
        # 0 - Left, 1 - Down, 2 - Right, 3 - Up
        # action is from exploration
        if np.random.rand() <= self.epsilon:
            # explore - do random action
            self.is_explore = True
            return np.random.choice(4,1)[0]

        # or action is from exploitation
        # exploit - choose action with max Q-value
        self.is_explore = False
        return np.argmax(self.q_table[self.state])

    # Q-Learning - update the Q Table using Q(s, a)
    def update_q_table(self, state, action, reward, next_state):
        # Q(s, a) = reward + gamma * max_a' Q(s', a')
        q_value = self.gamma * np.amax(self.q_table[next_state])
        q_value += reward
        self.q_table[state, action] = q_value
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    # UI to dump Q Table contents
    def print_q_table(self):
        print("Q-Table (Epsilon: %0.2f)" % self.epsilon)
        print(self.q_table)

    # update Exploration-Exploitation mix
    def update_epsilon(self):
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

Listing 9.3.2, q-learning-9.3.1.py. The main Q-Learning loop. The agent's Q-Table 
is updated every state, action, reward, and next state iteration:

# state, action, reward, next state iteration
for episode in range(episode_count):
    state = q_world.reset()
    done = False
    print_episode(episode, delay=delay)
    while not done:
        action = q_world.act()
        next_state, reward, done = q_world.step(action)
        q_world.update_q_table(state, action, reward, next_state)
        print_status(q_world, done, step, delay=delay)
        state = next_state
        # if episode is done, perform housekeeping
        if done:
            if q_world.is_in_win_state():
                wins += 1
                scores.append(step)
                if wins > maxwins:
                    print(scores)
                    exit(0)
            # Exploration-Exploitation is updated every episode
            q_world.update_epsilon()
            step = 1 
        else:
            step += 1

print(scores)
q_world.print_q_table()
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The perception-action-learning loop is illustrated in Listing 9.3.2. At every episode, 
the environment resets to the Start state. The action to execute is chosen and applied 
to the environment. The reward and next state are observed and used to update the 
Q-Table. The episode is completed (done = True) upon reaching the Goal or Hole 
state. For this example, the Q-Learning runs for 100 episodes or 10 wins, whichever 
comes first. Due to the decrease in the value of the self.epsilon variable at every 
episode, the agent starts to favor exploitation of Q-Table to determine the action to 
perform given a state. To see the Q-Learning simulation we simply need to run:

$ python3 q-learning-9.3.1.py

Figure 9.3.9: A screenshot showing the Q-Table after 2000 wins of the agent

The preceding figure shows the screenshot if maxwins = 2000 (2000x Goal state 
is reached) and delay = 0 (to see the final Q-Table only) by running:

$ python3 q-learning-9.3.1.py --train

The Q-Table has converged and shows the logical action that the agent can take 
given a state. For example, in the first row or state (0, 0), the policy advises move 
to the right. The same for the state (0, 1) on the second row. The second action 
reaches the Goal state. The scores variable dump shows that the minimum 
number of steps taken decreases as the agent gets correct actions from the policy.

From Figure 9.3.9, we can compute the value of each state from Equation 9.2.2, 
( ) ( ),

a
V s maxQ s a∗ = . For example, for state (0, 0), V*(s) = max(81.0,72.9,90.0,81.0) = 90.0. 
Following figure shows the value for each state:
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Figure 9.3.10: The value for each state from Figure 9.3.9 and Equation 9.2.2

Nondeterministic environment
In the event that the environment is nondeterministic, both the reward and action 
are probabilistic. The new system is a stochastic MDP. To reflect the nondeterministic 
reward the new value function is:

( ) � �
0

r
T

k
t t t k

k

V s Rπ γ +
=

= = ∑
� �� �� �� �� �

E E           (Equation 9.4.1)

The Bellman equation is modified as:

( ) ( ), max ,s a
Q s a r Q s aγ′ ′

′ ′= +� �� �� �E           (Equation 9.4.2)

Temporal-difference learning
Q-Learning is a special case of a more generalized Temporal-Difference Learning 
or TD-Learning ( )TD λ . More specifically, it's a special case of one-step TD-Learning 
TD(0):

( ) ( ) ( ) ( )( ), , max , ,
a

Q s a Q s a r Q s a Q s aα γ
′

′ ′= + + −           (Equation 9.5.1)

In the equation α  is the learning rate. We should note that when 1α= , Equation  
9.5.1 is similar to the Bellman equation. For simplicity, we'll refer to Equation  
9.5.1 as Q-Learning or generalized Q-Learning.



Deep Reinforcement Learning

[ 288 ]

Previously, we referred to Q-Learning as an off-policy RL algorithm since it learns 
the Q value function without directly using the policy that it is trying to optimize. 
An example of an on-policy one-step TD-learning algorithm is SARSA which similar 
to Equation 9.5.1:

( ) ( ) ( ) ( )( ), , , ,Q s a Q s a r Q s a Q s aα γ ′ ′= + + −           (Equation 9.5.2)

The main difference is the use of the policy that is being optimized to determine a'. 
The terms s, a, r, s' and a' (thus the name SARSA) must be known to update the Q 
value function at every iteration. Both Q-Learning and SARSA use existing estimates 
in the Q value iteration, a process known as bootstrapping. In bootstrapping, we 
update the current Q value estimate from the reward and the subsequent Q value 
estimate(s).

Q-Learning on OpenAI gym
Before presenting another example, there appears to be a need for a suitable RL 
simulation environment. Otherwise, we can only run RL simulations on very simple 
problems like in the previous example. Fortunately, OpenAI created Gym, https://
gym.openai.com.

The gym is a toolkit for developing and comparing RL algorithms. It works with 
most deep learning libraries, including Keras. The gym can be installed by running 
the following command:

$ sudo pip3 install gym

The gym has several environments where an RL algorithm can be tested against 
such as toy text, classic control, algorithmic, Atari, and 2D/3D robots. For example, 
FrozenLake-v0 (Figure 9.5.1) is a toy text environment similar to the simple 
deterministic world used in the Q-Learning in Python example. FrozenLake-v0 
has 12 states. The state marked S is the starting state, F is the frozen part of the 
lake which is safe, H is the Hole state that should be avoided, and G is the Goal 
state where the frisbee is. The reward is +1 for transitioning to the Goal state. For 
all other states, the reward is zero.

In FrozenLake-v0, there are also four available actions (Left, Down, Right, Up) 
known as action space. However, unlike the simple deterministic world earlier, the 
actual movement direction is only partially dependent on the chosen action. There 
are two variations of the FrozenLake-v0 environment, slippery and non-slippery. 
As expected, the slippery mode is more challenging:

https://gym.openai.com
https://gym.openai.com
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Figure 9.5.1: Frozen lake environment in OpenAI Gym

An action applied on FrozenLake-v0 returns the observation (equivalent to the next 
state), reward, done (whether the episode is finished), and a dictionary of debugging 
information. The observable attributes of the environment, known as observation 
space, are captured by the returned observation object.

The generalized Q-Learning can be applied to the FrozenLake-v0 environment. 
Table 9.5.1 shows the improvement in performance of both slippery and non-
slippery environments. A method of measuring the performance of the policy 
is the percent of episodes executed that resulted in reaching the Goal state. The 
higher is the percentage, the better. From the baseline of pure exploration (random 
action) of about 1.5%, the policy can achieve ~76% Goal state for non-slippery and 
~71% for the slippery environment. As expected, it is harder to control the slippery 
environment.

The code can still be implemented in Python and NumPy since it only requires 
a Q-Table. Listing 9.5.1 shows the implementation of the QAgent class while listing 
9.5.2 demonstrates the agent's perception-action-learning loop. Apart from using 
FrozenLake-v0 environment from OpenAI Gym, the most important change is 
the implementation of the generalized Q-Learning as defined by Equation 9.5.1 
in the update_q_table() function.

The qagent object can operate in either slippery or non-slippery mode. The agent 
is trained for 40,000 iterations. After training, the agent can exploit the Q-Table to 
choose the action to execute given any policy as shown in the test mode of Table 9.5.1. 
There is a huge performance boost in using the learned policy as demonstrated in 
Table 9.5.1. With the use of the gym, a lot of the code in constructing the 
environment is gone. 
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This will help us to focus on building a working RL algorithm. To run the code in 
slow motion or delay of 1 sec per action:

$ python3 q-frozenlake-9.5.1.py -d -t=1

Mode Run Approx % Goal
Train non-slippery python3 q-frozenlake-9.5.1.py 26.0
Test non-slippery python3 q-frozenlake-9.5.1.py -d 76.0
Pure random action 
non-slippery

python3 q-frozenlake-9.5.1.py -e 1.5

Train slippery python3 q-frozenlake-9.5.1.py -s 26
Test slippery python3 q-frozenlake-9.5.1.py -s -d 71.0
Pure random slippery python3 q-frozenlake-9.5.1.py -s -e 1.5

Table 9.5.1: Baseline and performance of generalized Q-Learning on the  
FrozenLake-v0 environment with learning rate = 0.5

Listing 9.5.1, q-frozenlake-9.5.1.py shows the implementation of Q-Learning on 
FrozenLake-v0 environment:

from collections import deque
import numpy as np
import argparse
import os
import time
import gym
from gym import wrappers, logger

class QAgent():
    def __init__(self,
                 observation_space,
                 action_space,
                 demo=False,
                 slippery=False,
                 decay=0.99):

        self.action_space = action_space
        # number of columns is equal to number of actions
        col = action_space.n
        # number of rows is equal to number of states
        row = observation_space.n
        # build Q Table with row x col dims
        self.q_table = np.zeros([row, col])
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        # discount factor
        self.gamma = 0.9

        # initially 90% exploration, 10% exploitation
        self.epsilon = 0.9
        # iteratively applying decay til 10% exploration/90% 
exploitation
        self.epsilon_decay = decay
        self.epsilon_min = 0.1

        # learning rate of Q-Learning
        self.learning_rate = 0.1

        # file where Q Table is saved on/restored fr
        if slippery:
            self.filename = 'q-frozenlake-slippery.npy'
        else:
            self.filename = 'q-frozenlake.npy'

        # demo or train mode 
        self.demo = demo
        # if demo mode, no exploration
        if demo:
            self.epsilon = 0

    # determine the next action
    # if random, choose from random action space
    # else use the Q Table
    def act(self, state, is_explore=False):
        # 0 - left, 1 - Down, 2 - Right, 3 - Up
        if is_explore or np.random.rand() < self.epsilon:
            # explore - do random action
            return self.action_space.sample()

        # exploit - choose action with max Q-value
        return np.argmax(self.q_table[state])

    # TD(0) learning (generalized Q-Learning) with learning rate
    def update_q_table(self, state, action, reward, next_state):
        # Q(s, a) += alpha * (reward + gamma * max_a' Q(s', a') - Q 
(s, a))
        q_value = self.gamma * np.amax(self.q_table[next_state])
        q_value += reward
        q_value -= self.q_table[state, action]
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        q_value *= self.learning_rate
        q_value += self.q_table[state, action]
        self.q_table[state, action] = q_value

    # dump Q Table
    def print_q_table(self):
        print(self.q_table)
        print("Epsilon : ", self.epsilon)

    # save trained Q Table
    def save_q_table(self):
        np.save(self.filename, self.q_table)

    # load trained Q Table
    def load_q_table(self):
        self.q_table = np.load(self.filename)

    # adjust epsilon
    def update_epsilon(self):
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

Listing 9.5.2, q-frozenlake-9.5.1.py. The main Q-Learning loop for the 
FrozenLake-v0 environment:

# loop for the specified number of episode
for episode in range(episodes):
    state = env.reset()
    done = False
    while not done:
        # determine the agent's action given state
        action = agent.act(state, is_explore=args.explore)
        # get observable data
        next_state, reward, done, _ = env.step(action)
        # clear the screen before rendering the environment
        os.system('clear')
        # render the environment for human debugging
        env.render()
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        # training of Q Table
        if done:
            # update exploration-exploitation ratio
            # reward > 0 only when Goal is reached
            # otherwise, it is a Hole
            if reward > 0:
                wins += 1

        if not args.demo:
            agent.update_q_table(state, action, reward, next_state)
            agent.update_epsilon()

        state = next_state
        percent_wins = 100.0 * wins / (episode + 1)
        print("-------%0.2f%% Goals in %d Episodes---------"
              % (percent_wins, episode))
        if done:
            time.sleep(5 * delay)
        else:
            time.sleep(delay)

Deep Q-Network (DQN) 
Using the Q-Table to implement Q-Learning is fine in small discrete environments. 
However, when the environment has numerous states or continuous as in most 
cases, a Q-Table is not feasible or practical. For example, if we are observing a state 
made of four continuous variables, the size of the table is infinite. Even if we attempt 
to discretize the four variables into 1000 values each, the total number of rows in the 
table is a staggering 10004 = 1e12. Even after training, the table is sparse - most of the 
cells in this table are zero.

A solution to this problem is called DQN [2] which uses a deep neural network 
to approximate the Q-Table. As shown in Figure 9.6.1. There are two approaches 
to build the Q-network: 

1.	 The input is the state-action pair, and the prediction is the Q value
2.	 The input is the state, and the prediction is the Q value for each action

The first option is not optimal since the network will be called a number of times 
equal to the number of actions. The second is the preferred method. The Q-Network 
is called only once. 
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The most desirable action is simply the action with the biggest Q value:

Figure 9.6.1: A Deep Q-Network

The data required to train the Q-Network come from the agent's experiences: 
( )0 0 1 1 1 1 2 2 1 1s a r s ,s r s , ,s a r sT T T Ta − −… . Each training sample is a unit of experience 

1 1s a r st t t t+ + . At a given state at timestep t, s = st, the action, a = at, is determined 
using the Q-Learning algorithm similar to the previous section:

( )
( )
( ),

a

sample a random
s argmaxQ s a otherwise

ε
π

 <   =     
          (Equation 9.6.1)

For notational simplicity, we omit the subscript and the use of the bold letter. We 
need to note that Q(s,a) is the Q-Network. Strictly speaking, it is Q(a|s) since the 
action is moved to the prediction as shown on the right of Figure 9.6.1. The action 
with the highest Q value is the action that is applied on the environment to get the 
reward, r = rt+1, the next state, s' = st+1 and a Boolean done indicating if the next state 
is terminal. From Equation 9.5.1 on generalized Q-Learning, an MSE loss function can 
be determined by applying the chosen action:

( ) ( )( )
2

max , ,
a

r Q s a Q s aγ
′

′ ′= + −L           (Equation 9.6.2)
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Where all terms are familiar from the previous discussion on Q-Learning and Q(a|s) 
→ Q(s,a). The term ( ) ( )max , max

a a
Q s a Q a s

′ ′
′ ′ ′ ′→ . In other words, using the Q-Network, 

predict the Q value of each action given next state and get the maximum among 
them. Note that at the terminal state s', ( ) ( )max | max | 0

a a
Q a s Q s a

′ ′
′ ′ ′ ′= = .

Algorithm 9.6.1, DQN algorithm:

Require: Initialize replay memory D to capacity N 

Require: Initialize action-value function Q with random weights θ

Require: Initialize target action-value function Qtarget with weights θ θ− =

Require: Exploration rate, ε  and discount factor, γ

1.	 for episode = 1, …,M do:
2.	     Given initial state s
3.	     for step = 1,…, T do:

4.	         Choose action 

( )
( )argmax , ;

a

sample a random
a Q s a otherwise

ε
θ

 <   =     
5.	         Execute action a, observe reward r and next state s'
6.	         Store transition (s, a, r, s') in D
7.	         Update the state, s = s'

8.	         //experience replay
9.	         Sample a mini batch of episode experiences (sj, aj, rj+1, sj+1) from D

10.	         ( )
1

1

1 1 1

1

max , ;
j

j

max
j target j j

a

r if episodeterminates at j
Q r Q s a otherwiseγ θ

+

+

−
+ + +

 +   = +    
11.	         Perform gradient descent step on ( )( )2, ;max j jQ Q s a θ−− with respect to 

parameters θ
12.	         // periodic update of the target network

13.	         Every C steps Qtarget = Q, that is set θ θ− =
14.	        End

However, it turns out that training the Q-Network is unstable. There are two 
problems causing the instability:

1.	 A high correlation between samples
2.	 A non-stationary target
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A high correlation is due to the sequential nature of sampling experiences. DQN 
addressed this issue by creating a buffer of experiences. The training data are 
randomly sampled from this buffer. This process is known as experience replay.

The issue of the non-stationary target is due to the target network Q(s',a') that is 
modified after every mini batch of training. A small change in the target network 
can create a significant change in the policy, the data distribution, and the correlation 
between the current Q value and target Q value. This is resolved by freezing the 
weights of the target network for C training steps. In other words, two identical 
Q-Networks are created. The target Q-Network parameters are copied from the 
Q-Network under training every C training steps.

The DQN algorithm is summarized in Algorithm 9.6.1.

DQN on Keras
To illustrate DQN, the CartPole-v0 environment of the OpenAI Gym is used. 
CartPole-v0 is a pole balancing problem. The goal is to keep the pole from falling over. 
The environment is 2D. The action space is made of two discrete actions (left and right 
movements). However, the state space is continuous and is made of four variables:

1.	 Linear position
2.	 Linear velocity
3.	 Angle of rotation
4.	 Angular velocity

The CartPole-v0 is shown in Figure 9.6.1.

Initially, the pole is upright. A reward of +1 is provided for every timestep that the 
pole remains upright. The episode ends when the pole exceeds 15 degrees from the 
vertical or 2.4 units from the center. The CartPole-v0 problem is considered solved 
if the average reward is 195.0 in 100 consecutive trials:

Figure 9.6.1: The CartPole-v0 environment
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Listing 9.6.1 shows us the DQN implementation for CartPole-v0. The DQNAgent 
class represents the agent using DQN. Two Q-Networks are created:

1.	 Q-Network or Q in Algorithm 9.6.1
2.	 Target Q-Network or Qtarget in Algorithm 9.6.1

Both networks are MLP with three hidden layers of 256 units each. The Q-Network 
is trained during experience replay, replay(). At a regular interval of C = 10 
training steps, the Q-Network parameters are copied to the Target Q-Network 
by update_weights(). This implements line 13, Qtarget = Q, in algorithm 9.6.1. 
After every episode, the ratio of exploration-exploitation is decreased by update_
epsilon() to take advantage of the learned policy.

To implement line 10 in Algorithm 9.6.1 during experience replay, replay(), for each 
experience unit, (sj, aj, rj+1, sj+1), the Q value for the action aj is set to Qmax. All other 
actions have their Q values unchanged.

This is implemented by the following lines:

# policy prediction for a given state
q_values = self.q_model.predict(state)

# get Q_max
q_value = self.get_target_q_value(next_state)

# correction on the Q value for the action used
q_values[0][action] = reward if done else q_value

Only the action aj has a non-zero loss equal to ( )( )2max , ;j jQ Q s a θ−  as shown by line 
11 of Algorithm 9.6.1. Note that the experience replay is called by the perception-
action-learning loop in Listing 9.6.2 after the end of each episode assuming that there 
is sufficient data in the buffer (that is, buffer size, is greater or equal to batch size). 
During the experience replay, one batch of experience units is randomly sampled 
and used to train the Q-Network.

Similar to the Q-Table, act() implements the ε -greedy policy, Equation 9.6.1. 
Experiences are stored by remember() in the replay buffer. The computation 
of Q is done by the get_target_q_value() function. On the average of 10 runs, 
CartPole-v0 is solved by DQN within 822 episodes. We need to take note that 
the results may vary every time the training runs.

Listing 9.6.1, dqn-cartpole-9.6.1.py shows us the DQN implementation within 
Keras:

from keras.layers import Dense, Input
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from keras.models import Model
from keras.optimizers import Adam
from collections import deque
import numpy as np
import random
import argparse
import gym
from gym import wrappers, logger

class DQNAgent():
    def __init__(self, state_space, action_space, args, 
episodes=1000):

        self.action_space = action_space

        # experience buffer
        self.memory = []

        # discount rate
        self.gamma = 0.9

        # initially 90% exploration, 10% exploitation
        self.epsilon = 0.9
        # iteratively applying decay til 10% exploration/90% 
exploitation
        self.epsilon_min = 0.1
        self.epsilon_decay = self.epsilon_min / self.epsilon
        self.epsilon_decay = self.epsilon_decay ** (1. / 
float(episodes))

        # Q Network weights filename
        self.weights_file = 'dqn_cartpole.h5'
        # Q Network for training
        n_inputs = state_space.shape[0]
        n_outputs = action_space.n
        self.q_model = self.build_model(n_inputs, n_outputs)
        self.q_model.compile(loss='mse', optimizer=Adam())
        # target Q Network
        self.target_q_model = self.build_model(n_inputs, n_outputs)
        # copy Q Network params to target Q Network
        self.update_weights()

        self.replay_counter = 0
        self.ddqn = True if args.ddqn else False



Chapter 9

[ 299 ]

        if self.ddqn:
            print("----------Double DQN--------")
        else:
            print("-------------DQN------------")

    # Q Network is 256-256-256 MLP
    def build_model(self, n_inputs, n_outputs):
        inputs = Input(shape=(n_inputs, ), name='state')
        x = Dense(256, activation='relu')(inputs)
        x = Dense(256, activation='relu')(x)
	    x = Dense(256, activation='relu')(x)
        x = Dense(n_outputs, activation='linear', name='action')(x)
        q_model = Model(inputs, x)
        q_model.summary()
        return q_model

    # save Q Network params to a file
    def save_weights(self):
        self.q_model.save_weights(self.weights_file)

    def update_weights(self):
        self.target_q_model.set_weights(self.q_model.get_weights())

    # eps-greedy policy
    def act(self, state):
        if np.random.rand() < self.epsilon:
            # explore - do random action
            return self.action_space.sample()

        # exploit
        q_values = self.q_model.predict(state)
        # select the action with max Q-value
        return np.argmax(q_values[0])

    # store experiences in the replay buffer
    def remember(self, state, action, reward, next_state, done):
        item = (state, action, reward, next_state, done)
        self.memory.append(item)
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    # compute Q_max
    # use of target Q Network solves the non-stationarity problem
    def get_target_q_value(self, next_state):
        # max Q value among next state's actions
        if self.ddqn:
            # DDQN
            # current Q Network selects the action
            # a'_max = argmax_a' Q(s', a')
            action = np.argmax(self.q_model.predict(next_state)[0])
            # target Q Network evaluates the action
            # Q_max = Q_target(s', a'_max)
            q_value = self.target_q_model.predict(next_state)[0]
[action]
        else:
            # DQN chooses the max Q value among next actions
            # selection and evaluation of action is on the 
		    # target Q Network
            # Q_max = max_a' Q_target(s', a')
            q_value = np.amax(self.target_q_model.predict(next_state)
[0])

        # Q_max = reward + gamma * Q_max
        q_value *= self.gamma
        q_value += reward
        return q_value

    # experience replay addresses the correlation issue between 
samples
    def replay(self, batch_size):
        # sars = state, action, reward, state' (next_state)
        sars_batch = random.sample(self.memory, batch_size)
        state_batch, q_values_batch = [], []

        # fixme: for speedup, this could be done on the tensor level
        # but easier to understand using a loop
        for state, action, reward, next_state, done in sars_batch:
            # policy prediction for a given state
            q_values = self.q_model.predict(state)

            # get Q_max
            q_value = self.get_target_q_value(next_state)
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            # correction on the Q value for the action used
            q_values[0][action] = reward if done else q_value

            # collect batch state-q_value mapping
            state_batch.append(state[0])
            q_values_batch.append(q_values[0])

        # train the Q-network
        self.q_model.fit(np.array(state_batch),
                         np.array(q_values_batch),
                         batch_size=batch_size,
                         epochs=1,
                         verbose=0)

        # update exploration-exploitation probability
        self.update_epsilon()
        # copy new params on old target after every 10 training 
updates
        if self.replay_counter % 10 == 0:
            self.update_weights()

        self.replay_counter += 1

    # decrease the exploration, increase exploitation
    def update_epsilon(self):
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

Listing 9.6.2, dqn-cartpole-9.6.1.py. Training loop of DQN implementation 
in Keras:

# Q-Learning sampling and fitting
for episode in range(episode_count):
    state = env.reset()
    state = np.reshape(state, [1, state_size])
    done = False
    total_reward = 0 
    while not done:
        # in CartPole-v0, action=0 is left and action=1 is right
        action = agent.act(state)
        next_state, reward, done, _ = env.step(action)
        # in CartPole-v0:
        # state = [pos, vel, theta, angular speed]
        next_state = np.reshape(next_state, [1, state_size])
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        # store every experience unit in replay buffer
        agent.remember(state, action, reward, next_state, done)
        state = next_state
        total_reward += reward

    # call experience relay
    if len(agent.memory) >= batch_size:
        agent.replay(batch_size)

    scores.append(total_reward)
    mean_score = np.mean(scores)
    if mean_score >= win_reward[args.env_id] and episode >= win_
trials:
        print("Solved in episode %d: Mean survival = %0.2lf in %d 
episodes"
              % (episode, mean_score, win_trials))
        print("Epsilon: ", agent.epsilon)
        agent.save_weights()
        break
    if episode % win_trials == 0:
        print("Episode %d: Mean survival = %0.2lf in %d episodes" %
              (episode, mean_score, win_trials))

Double Q-Learning (DDQN)
In DQN, the target Q-Network selects and evaluates every action resulting in an 
overestimation of Q value. To resolve this issue, DDQN [3] proposes to use the 
Q-Network to choose the action and use the target Q-Network to evaluate the action.

In DQN as summarized by Algorithm 9.6.1, the estimate of the Q value in line 10 is:

( )
1

1

max
1 1 1

1

max , ;
j

j

j target j j
a

r if episodeterminates at j
Q r Q s a otherwiseγ θ

+

+

−
+ + +

 +   = +    

Qtarget chooses and evaluates the action aj+1.

DDQN proposes to change line 10 to:
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( )
1

1

max
1 1 1 1

1

,argmax , ; ;
j

j

j target j j j
a

r if episodeterminates at j
Q

r Q s Q s a otherwiseγ θ θ
+

+

−
+ + + +

 +     =  +        

The term ( )
1

1 1argmax , ;
j

j j
a

Q s a θ
+

+ +  lets Q to choose the action. Then this action is evaluated 
by Qtarget.

In Listing 9.6.1, both DQN and DDQN are implemented. Specifically, for DDQN, 
the modification on the Q value computation performed by get_target_q_value() 
function is highlighted:

# compute Q_max
# use of target Q Network solves the non-stationarity problem
def get_target_q_value(self, next_state):
    # max Q value among next state's actions
    if self.ddqn:
        # DDQN
        # current Q Network selects the action
        # a'_max = argmax_a' Q(s', a')
        action = np.argmax(self.q_model.predict(next_state)[0])
        # target Q Network evaluates the action
        # Q_max = Q_target(s', a'_max)
        q_value = self.target_q_model.predict(next_state)[0][action]
    else:
        # DQN chooses the max Q value among next actions
        # selection and evaluation of action is on the target Q 
Network
        # Q_max = max_a' Q_target(s', a')
        q_value = np.amax(self.target_q_model.predict(next_state)[0])

    # Q_max = reward + gamma * Q_max
    q_value *= self.gamma
    q_value += reward
    return q_value

For comparison, on the average of 10 runs, the CartPole-v0 is solved by DDQN 
within 971 episodes. To use DDQN, run:

$ python3 dqn-cartpole-9.6.1.py -d
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Conclusion
In this chapter, we've been introduced to DRL. A powerful technique believed 
by many researchers as the most promising lead towards artificial intelligence. 
Together, we've gone over the principles of RL. RL is able to solve many toy 
problems, but the Q-Table is unable to scale to more complex real-world problems. 
The solution is to learn the Q-Table using a deep neural network. However, training 
deep neural networks on RL is highly unstable due to sample correlation and non-
stationarity of the target Q-Network.

DQN proposed a solution to these problems using experience replay and separating 
the target network from the Q-Network under training. DDQN suggested further 
improvement of the algorithm by separating the action selection from action 
evaluation to minimize the overestimation of Q value. There are other improvements 
proposed for the DQN. Prioritized experience replay [6] argues that that experience 
buffer should not be sampled uniformly. Instead, experiences that are more 
important based on TD errors should be sampled more frequently to accomplish 
more efficient training. [7] proposes a dueling network architecture to estimate the 
state value function and the advantage function. Both functions are used to estimate 
the Q value for faster learning.

The approach presented in this chapter is value iteration/fitting. The policy is 
learned indirectly by finding an optimal value function. In the next chapter, the 
approach will be to learn the optimal policy directly by using a family of algorithms 
called policy gradient methods. Learning the policy has many advantages. In 
particular, policy gradient methods can deal with both discrete and continuous 
action spaces.
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Policy Gradient Methods
In the final chapter of this book, we're going to introduce algorithms that 
directly optimize the policy network in reinforcement learning. These algorithms 
are collectively referred to as policy gradient methods. Since the policy network 
is directly optimized during training, the policy gradient methods belong to the 
family of on-policy reinforcement learning algorithms. Like value-based methods 
that we discussed in Chapter 9, Deep Reinforcement Learning, policy gradient 
methods can also be implemented as deep reinforcement learning algorithms.

A fundamental motivation in studying the policy gradient methods is addressing 
the limitations of Q-Learning. We'll recall that Q-Learning is about selecting the 
action that maximizes the value of the state. With Q function, we're able to determine 
the policy that enables the agent to decide on which action to take for a given state. 
The chosen action is simply the one that gives the agent the maximum value. In 
this respect, Q-Learning is limited to a finite number of discrete actions. It's not able 
to deal with continuous action space environments. Furthermore, Q-Learning is not 
directly optimizing the policy. In the end, reinforcement learning is about finding 
that optimal policy that the agent will be able to use to decide on which action it 
should take in order to maximize the return.

In contrast, policy gradient methods are applicable to environments with discrete or 
continuous action spaces. In addition, the four policy gradient methods that we will 
be presenting in this chapter are directly optimizing the performance measure of the 
policy network. This results in a trained policy network that the agent can use to act 
in its environment optimally.

In summary, the goal of this chapter is to present:

•	 The policy gradient theorem
•	 Four policy gradient methods: REINFORCE, REINFORCE with baseline,  

Actor-Critic, and Advantage Actor-Critic (A2C)
•	 A guide on how to implement the policy gradient methods in Keras  

in a continuous action space environment
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Policy gradient theorem
As discussed in Chapter 9, Deep Reinforcement Learning, in Reinforcement Learning 
the agent is situated in an environment that is in state st, an element of state space  
S . The state space S  may be discrete or continuous. The agent takes an action at from 
the action space A  by obeying the policy, ( )t ta sπ . A  may be discrete or continuous. 
Because of executing the action at, the agent receives a reward rt+1 and the 
environment transitions to a new state st+1. The new state is dependent only  
on the current state and action. The goal of the agent is to learn an optimal  
policy π∗  that maximizes the return from all the states:

targmax Rππ∗ =      (Equation 9.1.1)

The return, tR , is defined as the discounted cumulative reward from time t until the 
end of the episode or when the terminal state is reached:

( )
0

T
k

t t t k
k

V s R rπ γ +
=

= =∑      (Equation 9.1.2)

From Equation 9.1.2, the return can also be interpreted as a value of a given state 
by following the policy π . It can be observed from Equation 9.1.1 that future 
rewards have lower weights compared to immediate rewards since generally  

1.0kγ <  where [ ]0,1γ ∈ .

So far, we have only considered learning the policy by optimizing a value 
based function, Q(s,a). Our goal in this chapter is to directly learn the policy by 
parameterizing ( ) ( ),t t t ta s a sπ π θ→ . By parameterization, we can use a neural 
network to learn the policy function. Learning the policy means that we are going 
to maximize a certain objective function, ( )θJ  which is a performance measure with 
respect to parameter θ . In episodic reinforcement learning, the performance measure 
is the value of the start state. In the continuous case, the objective function is the 
average reward rate.

Maximizing the objective function ( )θJ  is achieved by performing gradient 
ascent. In gradient ascent, the gradient update is in the direction of the derivative 
of the function being optimized. So far, all our loss functions are optimized by 
minimization or by performing gradient descent. Later, in the Keras implementation, 
we're able to see that the gradient ascent can be performed by simply negating the 
objective function and performing gradient descent.

The advantage of learning the policy directly is that it can be applied to both discrete 
and continuous action spaces. For discrete action spaces:
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( ) ( )| ,i t i ia s softmax a for aπ θ = ∈A      (Equation 10.1.1)

In that formula, ai is the i-th action. ai can be the prediction of a neural network  
or a linear function of state-action features:

( ), T
i t ia s aφ θ=      (Equation 10.1.2)

( ),t is aφ  is any function such as an encoder that converts the state-action to features.

( ),i ta sπ θ  determines the probability of each ai. For example, in the cartpole 
balancing problem in the previous chapter, the goal is to keep the pole upright 
by moving the cart along the 2D axis to the left or to the right. In this case, a0 and 
a1 are the probabilities of the left and right movements respectively. In general, 
the agent takes the action with the highest probability, ( )max ,t i ti

a a sπ θ= .

For continuous action spaces, ( ),t ta sπ θ  samples an action from a probability 
distribution given the state. For example, if the continuous action space is the range 
[ ]1.0,1.0ta ∈ − , then targmax Rππ∗ =  is usually a Gaussian distribution whose mean 

and standard deviation are predicted by the policy network. The predicted action 
is a sample from this Gaussian distribution. To ensure that no invalid prediction 
is generated, the action is clipped between -1.0 and 1.0.

Formally, for continuous action spaces, the policy is a sample from a Gaussian 
distribution:

( ) ( ) ( )( ), ~ ,t t t t ta s a s sπ θ µ σ= N      (Equation 10.1.3)

The mean, µ , and standard deviation, σ , are both functions of the state features:

( ) ( )Tt ts s µµ φ θ=      (Equation 10.1.4)

( ) ( )( )T
t ts s σσ ς φ θ=      (Equation 10.1.5)

( )tsφ  is any function that converts the state to its features. ( ) ( )log 1 xx eς = +  is the 
softplus function that ensures positive values of standard deviation. One way 
of implementing the state feature function, ( )tsφ , is using the encoder of an 
autoencoder network. At the end of this chapter, we will train an autoencoder 
and use the encoder part as the state feature function. Training a policy network 
is therefore a matter of optimizing the parameters µ σθ θ θ =    .



Policy Gradient Methods

[ 310 ]

Given a continuously differentiable policy function, ( ),t ta sπ θ , the policy gradient 
can be computed as:

( )
( )
( )

( ) ( ) ( )
,

, , ,
,

t t
t t t t t t

t t

a s
Q s a ln a s Q s a

a s
θ π π

π π θ

π θ
θ π θ

π θ

 ∇   ∇ = = ∇      
E EJ      (Equation 10.1.6)

Equation 10.1.6 is also known as the policy gradient theorem. It is applicable to both 
discrete and continuous action spaces. The gradient with respect to the parameter θ  
is computed from the natural logarithm of the policy action sampling scaled by the 
Q value. Equation 10.1.6 takes advantage of the property of the natural logarithm, 

Inx x
x
∇
=∇

.

Policy gradient theorem is intuitive in the sense that the performance gradient is 
estimated from the target policy samples and proportional to the policy gradient. 
The policy gradient is scaled by the Q value to encourage actions that positively 
contribute to the state value. The gradient is also inversely proportional to the action 
probability to penalize frequently occurring actions that do not contribute to the 
increase of performance measure.

In the next section, we will demonstrate the different methods of estimating the 
policy gradient.

For the proof of policy gradient theorem, please see [2] and lecture notes 
from David Silver on Reinforcement Learning, http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

There are subtle advantages of policy gradient methods. For example, in some 
card-based games, value-based methods have no straightforward procedure in 
handling stochasticity, unlike policy-based methods. In policy-based methods, the 
action probability changes smoothly with the parameters. Meanwhile, value-based 
actions may suffer from drastic changes with respect to small changes in parameters. 
Lastly, the dependence of policy-based methods on parameters leads us to different 
formulations on how to perform gradient ascent on the performance measure. These 
are the four policy gradient methods to be presented in the succeeding sections.

Policy-based methods have their own disadvantages as well. They are generally 
harder to train because of the tendency to converge on a local optimum instead of the 
global optimum. In the experiments to be presented at the end of this chapter, it is 
easy for an agent to become comfortable and to choose actions that do not necessarily 
give the highest value. Policy gradient is also characterized by high variance. 

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
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The gradient updates are frequently overestimated. Furthermore, training policy-
based methods are time-consuming. The training requires thousands of episodes 
(that is, not sample efficient). Each episode only provides a small number of samples. 
Typical training in the implementation provided at the end of the chapter would 
take about an hour for 1,000 episodes on a GTX 1060 GPU.

In the following sections, we discuss the four policy gradient methods. While the 
discussion focuses on continuous action spaces, the concept is generally applicable 
to discrete action spaces. Due to similarities in the implementation of the policy 
and value networks of the four policy gradient methods, we will wait until the 
end of this chapter to illustrate the implementation into Keras.

Monte Carlo policy gradient 
(REINFORCE) method
The simplest policy gradient method is called REINFORCE [5],  
this is a Monte Carlo policy gradient method:

( ) ( ),t t tR ln a sπ θθ π θ ∇ = ∇  EJ      (Equation 10.2.1)

where Rt is the return as defined in Equation 9.1.2. Rt is an unbiased sample  
of  ( ),t tQ s aπ  in the policy gradient theorem.

Algorithm 10.2.1 summarizes the REINFORCE algorithm [2]. REINFORCE is 
a Monte Carlo algorithm. It does not require knowledge of the dynamics of the 
environment (that is, model-free). Only experience samples, 1 1i i i is a r s+ + , are needed 
to optimally tune the parameters of the policy network, ( ),t ta sπ θ . The discount factor, 
γ , takes into consideration that rewards decrease in value as the number of steps 
increases. The gradient is discounted by tγ . Gradients taken at later steps have 
smaller contributions. The learning rate, α , is a scaling factor of the gradient update.

The parameters are updated by performing gradient ascent using the discounted 
gradient and learning rate. As a Monte Carlo algorithm, REINFORCE requires that 
the agent completes an episode before processing the gradient updates. Due to its 
Monte Carlo nature, the gradient update of REINFORCE is characterized by high 
variance. At the end of this chapter, we will implement the REINFORCE algorithm 
into Keras.

Algorithm 10.2.1 REINFORCE

Require: A differentiable parameterized target policy network, ( ),t ta sπ θ .
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Require: Discount factor, [ ]0,1γ ∈  and learning rate α . For example, 0.99γ =  and 
1 3eα = − .

Require: 0θ , initial policy network parameters (for example, 0 0θ → ).

1.	 Repeat

2.	     Generate an episode ( )0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −…  by following 
( ),t ta sπ θ

3.	     for steps 0, , 1t T= −…  do

4.	         Compute return, 
0
rT k

t t kk
R γ +=
=∑

5.	         Compute discounted performance gradient, ( ) ( )In | ,t
t t tR a sθθ γ π θ∇ = ∇J

6.	         Perform gradient ascent, ( )θ θ α θ= + ∇J

Figure 10.2.1: Policy network

In REINFORCE, the parameterized policy can be modeled by a neural network 
as shown in Figure 10.2.1. As discussed in the previous section, for the case 
of continuous action spaces, the state input is converted into features. The state 
features are the inputs of the policy network. The Gaussian distribution representing 
the policy function has a mean and standard deviation that are both functions of 
the state features. The policy network, ( )π θ , could be an MLP, CNN, or an RNN 
depending on the nature of the state inputs. The predicted action is simply a sample 
from the policy function.
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REINFORCE with baseline method
The REINFORCE algorithm can be generalized by subtracting a baseline from the 
return, ( )t tR B sδ= − . The baseline function, B(st) can be any function as long as it 
does not depend on at The baseline does not alter the expectation of the performance 
gradient:

( ) ( )( ) ( ) ( ), ,t t t t t t tR B s ln a s R ln a sπ θ π θθ π θ π θ   ∇ = − ∇ = ∇      E EJ      (Equation 10.3.1)

Equation 10.3.1 implies that ( ) ( ), 0t t tB s ln a sπ θ π θ ∇ =  E  since ( )tB s  is not a function  
of ta .

While the introduction of baseline does not change the expectation, it reduces the 
variance of the gradient updates. The reduction in variance generally accelerates 
learning. In most cases, we use the value function, ( ) ( )t tB s V s=  as the baseline. If the 
return is overestimated, the scaling factor is proportionally reduced by the value 
function resulting to a lower variance. The value function is also parameterized, 
( ) ( ),t t vV s V s θ→  and is jointly trained with the policy network. In continuous action 

spaces, the state value can be a linear function of state features:

( ) ( ), T
t t v t vv V s sθ φ θ= =      (Equation 10.3.2)

Algorithm 10.3.1 summarizes the REINFORCE with baseline method [1]. This is 
similar to REINFORCE except that the return is replaced by S . The difference is we 
are now training two neural networks. As shown in Figure 10.3.1, in addition to the 
policy network, ( )π θ , the value network, ( )V θ , is also trained at the same time. The 
policy network parameters are updated by the performance gradient, ( )θ∇J , while 
the value network parameters are adjusted by the value gradient, ( )vV θ∇ . Since 
REINFORCE is a Monte Carlo algorithm, it follows that the value function training 
is also a Monte Carlo algorithm.

The learning rates are not necessarily the same. Note that the value network is 
also performing gradient ascent. We illustrate how to implement REINFORCE 
with baseline using Keras at the end of this chapter.

Algorithm 10.3.1 REINFORCE with baseline

Require: A differentiable parameterized target policy network, ( ),t ta sπ θ .

Require: A differentiable parameterized value network, ( ),t vV s θ .
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Require: Discount factor, [ ]0,1γ ∈ , the learning rate α  for the performance gradient 
and learning rate for the value gradient, vα .

Require: 0θ , initial policy network parameters (for example, 0 0θ → ). 
0vθ , initial value 

network parameters (for example, 0 0vθ → ).

1.	 Repeat

2.	     Generate an episode 0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −…  by following 
( ),t ta sπ θ

3.	     for steps 0, , 1t T= −…  do

4.	         Compute return, 
0

T k
t t kk
R rγ +=
=∑

5.	         Subtract baseline, ( ),t t vR V sδ θ= −

6.	         Compute discounted value gradient, ( ) ( ),
v

t
v t vV V sθθ γ δ θ∇ = ∇

7.	         Perform gradient ascent, ( )v v v va Vθ θ θ= + ∇
8.	         Compute discounted performance gradient, 

( ) ( ),t
t tln a sθθ γ δ π θ∇ = ∇J

9.	         Perform gradient ascent, ( )aθ θ θ= + ∇J

Figure 10.3.1: Policy and value networks
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Actor-Critic method
In REINFORCE with baseline method, the value is used as a baseline. It is not used 
to train the value function. In this section, we'll introduce a variation of REINFORCE 
with baseline called the Actor-Critic method. The policy and value networks played 
the roles of actor and critic networks. The policy network is the actor deciding 
which action to take given the state. Meanwhile, the value network evaluates the 
decision made by the actor or the policy network. The value network acts as a 
critic which quantifies how good or bad the chosen action made by the actor is. 
The value network evaluates the state value, ( ), vV s θ , by comparing it with the sum 
of the received reward, r , and the discounted value of the observed next state, 
( ), vV sγ θ′ . The difference, δ , is expressed as:

( ) ( ) ( ) ( )1 1, , , ,t t v t v v vr V s V s r V s V sδ γ θ θ γ θ θ+ + ′= + − = + −      (Equation 10.4.1)

where we dropped the subscripts of r  and s  for simplicity. Equation 10.4.1 is similar 
to the temporal differencing in Q-Learning discussed in Chapter 9, Deep Reinforcement 
Learning. The next state value is discounted by [ ]0,1γ ∈  Estimating distant future 
rewards is difficult. Therefore, our estimate is based only on the immediate future, 

( ), vr V sγ θ′+ . This has been known as bootstrapping technique. The bootstrapping 
technique and the dependence on state representation in Equation 10.4.1 often 
accelerates learning and reduces variance. From Equation 10.4.1, we notice that the 
value network evaluates the current state, ts s= , which is due to the previous action, 

1ta − , of the policy network. Meanwhile, the policy gradient is based on the current 
action, ta . In a sense, the evaluation is delayed by one step.

Algorithm 10.4.1 summarizes the Actor-Critic method [1]. Apart from the evaluation 
of the state value which is used to train both the policy and value networks, the 
training is done online. At every step, both networks are trained. This is unlike 
REINFORCE and REINFORCE with baseline where the agent completes an episode 
before the training is performed. The value network is consulted twice. Firstly, 
during the value estimate of the current state and secondly for the value of the next 
state. Both values are used in the computation of gradients. Figure 10.4.1 shows the 
Actor-Critic network. We will implement the Actor-Critic method in Keras at the end 
of this chapter.

Algorithm 10.4.1 Actor-Critic

Require: A differentiable parameterized target policy network, ( ),a sπ θ .

Require: A differentiable parameterized value network, ( ), vV s θ .
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Require: Discount factor, [ ]0,1γ ∈ , the learning rate α  for the performance gradient, 
and the learning rate for the value gradient, vα .

Require: 0θ , initial policy network parameters (for example, 0 0θ → ). 0vθ , initial value 
network parameters (for example, 0 0vθ → ).

1.	 Repeat
2.	     for steps 0, , 1t T= −…  do

3.	         Sample an action ( )~ ,a a sπ θ

4.	         Execute the action and observe reward r  and next state s′
5.	         Evaluate state value estimate, ( ) ( ), ,v vr V s V sδ γ θ θ′= + −

6.	         Compute discounted value gradient, ( ) ( ),
v

t
v vV V sθθ γ δ θ∇ = ∇

7.	         Perform gradient ascent, ( )v v v vVθ θ α θ= + ∇

8.	         Compute discounted performance gradient, ( ) ( ),t ln a sθθ γ δ π θ∇ = ∇J

9.	         Perform gradient ascent, ( )Jθ θ α θ= + ∇

10.	         s s′=

Figure 10.4.1: Actor-critic network
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Advantage Actor-Critic (A2C) method
In the Actor-Critic method from the previous section, the objective is for the value 
function to evaluate the state value correctly. There are other techniques to train 
the value network. One obvious method is to use MSE (mean squared error) in the 
value function optimization, similar to the algorithm in Q-Learning. The new value 
gradient is equal to the partial derivative of the MSE between the return, tR , and the 
state value:

( )
( )( )2,t v

v
v

R V s
V

δ θ
θ

δθ

−
∇ =      (Equation 10.5.1)

As ( )( ), 0t vR V s θ− → , the value network prediction gets more accurate. We call this 
variation of the Actor-Critic algorithm as A2C. A2C is a single threaded or 
synchronous version of the Asynchronous Advantage Actor-Critic (A3C)  
by [2]. The quantity ( )( ),t vR V s θ−  is called Advantage.

Algorithm 10.5.1 summarizes the A2C method. There are some differences between 
A2C and Actor-Critic. Actor-Critic is online or is trained on per experience sample. 
A2C is similar to Monte Carlo algorithms REINFORCE and REINFORCE with 
baseline. It is trained after one episode has been completed. Actor-Critic is trained 
from the first state to the last state. A2C training starts from the last state and ends 
on the first state. In addition, the A2C policy and value gradients are no longer 
discounted by tγ .

The corresponding network for A2C is similar to Figure 10.4.1 since we 
only changed the method of gradient computation. To encourage agent 
exploration during training, A3C algorithm [2] suggests that the gradient 
of the weighted entropy value of the policy function is added to the gradient 
function, ( )( )| ,t tH a sθβ π θ∇ . Recall that entropy is a measure of information 
or uncertainty of an event.

Algorithm 10.5.1 Advantage Actor-Critic (A2C)

Require: A differentiable parameterized target policy network, ( ),t ta sπ θ .

Require: A differentiable parameterized value network, ( ),t vV s θ .

Require: Discount factor, [ ]0,1γ ∈ , the learning rate α  for the performance gradient, 
the learning rate for the value gradient, vα  and entropy weight, β .
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Require: 0θ , initial policy network parameters (for example, 0 0θ → ). 0vθ , initial value 
network parameters (for example, 0 0vθ → ).

1.	 Repeat

2.	     Generate an episode 0 0 1 1 1 1 2 2 1 1, , , T T T Ts a r s s a r s s a r s− −…  by following 
( ),t ta sπ θ

3.	     ( )
0
, , ,

T
t

T v T

if s is terminal
R

V s for non terminal s bootstrap fromlast stateθ

   =  −  

4.	     for steps 1, ,0t T= − …  do

5.	         Compute return, t t tR r Rγ= +

6.	         Compute value gradient, ( )
( )( )2,t v

v
v

R V s
V

θ
θ

θ

∂ −
∇ =

∂

7.	         Accumulate gradient, ( )v v v va Vθ θ θ= + ∇
8.	         Compute performance gradient, 

( ) ( ) ( )( ) ( )( ), , ,t t t v t tln a s R V s H a sθ θθ π θ θ β π θ∇ =∇ − + ∇J

9.	         Perform gradient ascent, ( )aθ θ θ= + ∇J

Policy Gradient methods with Keras
The four policy gradient methods (Algorithms 10.2.1 to 10.5.1) discussed in the 
previous sections use identical policy and value network models. The policy and 
value networks in Figures 10.2.1 to 10.4.1 have the same configurations. The four 
policy gradient methods differ only in:

•	 Performance and value gradients formula
•	 Training strategy

In this section, we discuss the implementation in Keras of Algorithms 10.2.1 to 10.5.1 
in one code, since they share many common routines.

The complete code can be found on https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

But before discussing the implementation, let's briefly explore the training 
environment.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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Figure 10.6.1 MountainCarContinuous-v0 OpenAI gym environment

Unlike Q-Learning, policy gradient methods are applicable to both discrete and 
continuous action spaces. In our example, we'll demonstrate the four policy gradient 
methods on a continuous action space case example, MountainCarContinuous-v0 
of OpenAI gym, https://gym.openai.com. In case you are not familiar with 
OpenAI gym, please see Chapter 9, Deep Reinforcement Learning.

A snapshot of MountainCarContinuous-v0 2D environment is shown in Figure 
10.6.1. In this 2D environment, a car with a not too powerful engine is between two 
mountains. In order to reach the yellow flag on top of the mountain on the right, it 
must drive back and forth to gain enough momentum. The more energy (that is, the 
greater the absolute value of action) that is applied to the car, the smaller (or, the 
more negative) is the reward. The reward is always negative, and it is only positive 
upon reaching the flag. In that case, the car receives a reward of +100. However, 
every action is penalized by the following code:

reward-= math.pow(action[0],2)*0.1

The continuous range of valid action values is [-1.0, 1.0]. Beyond the range, 
the action is clipped to its minimum or maximum value. Therefore, it makes 
no sense to apply an action value that is greater than 1.0 or less than -1.0. 
The MountainCarContinuous-v0 environment state has two elements: 

•	 Car position
•	 Car velocity

https://gym.openai.com
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The state is converted to state features by an encoder. The predicted action is the 
output of the policy model given the state. The output of the value function is the 
predicted value of the state:

Figure 10.6.2 Autoencoder model

Figure 10.6.3 Encoder model



Chapter 10

[ 321 ]

Figure 10.6.4 Decoder model

As shown in Figures 10.2.1 to 10.4.1, before building the policy and value networks, 
we must first create a function that converts the state to features. This function is 
implemented by an encoder of an autoencoder similar to the ones implemented in 
Chapter 3, Autoencoders. Figure 10.6.2 shows an autoencoder made of an encoder and 
a decoder. In Figure 10.6.3, the encoder is an MLP made of Input(2)-Dense(256, 
activation='relu')-Dense(128, activation='relu')-Dense(32). Every 
state is converted into a 32-dim feature vector. In Figure 10.6.4, the decoder is also 
an MLP but made of Input(32)-Dense(128, activation='relu')-Dense(256, 
activation='relu')-Dense(2). The autoencoder is trained for 10 epochs with an 
MSE, loss function, and Keras default Adam optimizer. We sampled 220,000 random 
states for the train and test dataset and applied 200k/20k train-test split. After training, 
the encoder weights are saved for future use in the policy and value networks training. 
Listing 10.6.1 shows the methods for building and training the autoencoder.

Listing 10.6.1, policygradient-car-10.1.1.py shows us the methods for building 
and training the autoencoder:

# autoencoder to convert states into features
def build_autoencoder(self):
    # first build the encoder model
    inputs = Input(shape=(self.state_dim, ), name='state')
    feature_size = 32
    x = Dense(256, activation='relu')(inputs)
    x = Dense(128, activation='relu')(x)
    feature = Dense(feature_size, name='feature_vector')(x)

    # instantiate encoder model
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    self.encoder = Model(inputs, feature, name='encoder')
    self.encoder.summary()
    plot_model(self.encoder, to_file='encoder.png',  
show_shapes=True)

    # build the decoder model
    feature_inputs = Input(shape=(feature_size,),  
name='decoder_input')
    x = Dense(128, activation='relu')(feature_inputs)
    x = Dense(256, activation='relu')(x)
    outputs = Dense(self.state_dim, activation='linear')(x)

    # instantiate decoder model
    self.decoder = Model(feature_inputs, outputs, name='decoder')
    self.decoder.summary()
    plot_model(self.decoder, to_file='decoder.png',  
show_shapes=True)

    # autoencoder = encoder + decoder
    # instantiate autoencoder model
    self.autoencoder = Model(inputs,  
self.decoder(self.encoder(inputs)), name='autoencoder')
    self.autoencoder.summary()
    plot_model(self.autoencoder, to_file='autoencoder.png',  
show_shapes=True)

    # Mean Square Error (MSE) loss function, Adam optimizer
    self.autoencoder.compile(loss='mse', optimizer='adam')

# training the autoencoder using randomly sampled
# states from the environment
def train_autoencoder(self, x_train, x_test):
    # train the autoencoder
    batch_size = 32
    self.autoencoder.fit(x_train,
                         x_train,
                         validation_data=(x_test, x_test),
                         epochs=10,
                         batch_size=batch_size)
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Figure 10.6.5: Policy model (actor model)

Given the MountainCarContinuous-v0 environment, the policy (or actor) 
model predicts the action that must be applied on the car. As discussed in 
the first section of this chapter on policy gradient methods, for continuous 
action spaces the policy model samples an action from a Gaussian distribution, 
( ) ( ) ( )( ), ~ ,t t t t ta s a s sπ θ µ σ= N . In Keras, this is implemented as:

    # given mean and stddev, sample an action, clip and return
    # we assume Gaussian distribution of probability of selecting  
an
    # action given a state
    def action(self, args):
        mean, stddev = args
        dist = tf.distributions.Normal(loc=mean, scale=stddev)
        action = dist.sample(1)
        action = K.clip(action,
                        self.env.action_space.low[0],
                        self.env.action_space.high[0])
        return action

The action is clipped between its minimum and maximum possible values.

The role of the policy network is to predict the mean and standard deviation of the 
Gaussian distribution. Figure 10.6.5 shows the policy network to model ( ),t ta sπ θ . It's 
worth noting that the encoder model has pretrained weights that are frozen. Only 
the mean and standard deviation weights receive the performance gradient updates. 
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The policy network is basically the implementation of Equations 10.1.4 and 10.1.5 that 
are repeated here for convenience:

( ) ( )Tt ts s µµ φ θ=      (Equation 10.1.4)

( ) ( )( )T
t ts s σσ ς φ θ=      (Equation 10.1.5)

where ( )tsφ  is the encoder, µθ  are the weights of the mean's Dense(1) layer, and 
σθ  are the weights of the standard deviation's Dense(1) layer. We used a modified 

softplus function, ( )ς ⋅ , to avoid zero standard deviation:

# some implementations use a modified softplus to ensure that
# the stddev is never zero
def softplusk(x):
    return K.softplus(x) + 1e-10

The policy model builder is shown in the following listing. Also included in this 
listing are the log probability, entropy, and value models which we will discuss next.

Listing 10.6.2, policygradient-car-10.1.1.py shows us the method for building 
the policy (actor), logp, entropy, and value models from the encoded state features:

def build_actor_critic(self):
    inputs = Input(shape=(self.state_dim, ), name='state')
    self.encoder.trainable = False
    x = self.encoder(inputs)
    mean = Dense(1,
                 activation='linear',
                 kernel_initializer='zero',
                 name='mean')(x)
    stddev = Dense(1,
                   kernel_initializer='zero',
                   name='stddev')(x)
    # use of softplusk avoids stddev = 0
    stddev = Activation('softplusk', name='softplus')(stddev)
    action = Lambda(self.action,
                    output_shape=(1,),
                    name='action')([mean, stddev])
    self.actor_model = Model(inputs, action, name='action')
    self.actor_model.summary()
    plot_model(self.actor_model, to_file='actor_model.png',  
show_shapes=True)
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    logp = Lambda(self.logp,
                  output_shape=(1,),
                  name='logp')([mean, stddev, action])
    self.logp_model = Model(inputs, logp, name='logp')
    self.logp_model.summary()
    plot_model(self.logp_model, to_file='logp_model.png', show_
shapes=True)

    entropy = Lambda(self.entropy,
                     output_shape=(1,),
                     name='entropy')([mean, stddev])
    self.entropy_model = Model(inputs, entropy, name='entropy')
    self.entropy_model.summary()
    plot_model(self.entropy_model, to_file='entropy_model.png', show_
shapes=True)
    value = Dense(1,
                  activation='linear',
                  kernel_initializer='zero',
                  name='value')(x)
    self.value_model = Model(inputs, value, name='value')
    self.value_model.summary()

Figure 10.6.6: Gaussian log probability model of the policy
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Figure 10.6.7: Entropy model

Apart from the policy network, ( ),t ta sπ θ , we must also have the action log probability 
(logp) network ( )In | ,t ta sπ θ  since this is actually what calculates the gradient. As 
shown in Figure 10.6.6, the logp network is simply the policy network where an 
additional Lambda(1) layer computes the log probability of the Gaussian distribution 
given action, mean, and standard deviation. The logp network and actor (policy) 
model share the same set of parameters. The Lambda layer does not have any 
parameter. It is implemented by the following function:

    # given mean, stddev, and action compute
    # the log probability of the Gaussian distribution
    def logp(self, args):
        mean, stddev, action = args
        dist = tf.distributions.Normal(loc=mean, scale=stddev)
        logp = dist.log_prob(action)
        return logp

Training the logp network trains the actor model as well. In the training methods 
that are discussed in this section, only the logp network is trained.

As shown in Figure 10.6.7, the entropy model also shares parameters with the 
policy network. The output Lambda(1) layer computes the entropy of the Gaussian 
distribution given the mean and standard deviation using the following function:

    # given the mean and stddev compute the Gaussian dist entropy
    def entropy(self, args):
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        mean, stddev = args
        dist = tf.distributions.Normal(loc=mean, scale=stddev)
        entropy = dist.entropy()
        return entropy

The entropy model is only used by the A2C method:

Figure 10.6.8: A value model

Preceding figure shows the value model. The model also uses the pre-trained 
encoder with frozen weights to implement following equation which is repeated 
here for convenience:

( ) ( ), T
t t v t vv V s sθ φ θ= =       (Equation 10.3.2)

vθ  are the weights of the Dense(1) layer, the only layer that receives value gradient 
updates. Figure 10.6.8 represents ( ),t vV s θ  in Algorithms 10.3.1 to 10.5.1. The value 
model can be built in a few lines:

inputs = Input(shape=(self.state_dim, ), name='state')
self.encoder.trainable = False
x = self.encoder(inputs)

value = Dense(1,
              activation='linear',
              kernel_initializer='zero',
              name='value')(x)
self.value_model = Model(inputs, value, name='value')

These lines are also implemented in method build_actor_critic(), which is 
shown in Listing 10.6.2.
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After building the network models, the next step is training. In Algorithms 10.2.1 to 
10.5.1, we perform objective function maximization by gradient ascent. In Keras, we 
perform loss function minimization by gradient descent. The loss function is simply 
the negative of the objective function being maximized. The gradient descent is the 
negative of gradient ascent. Listing 10.6.3 shows the logp and value loss functions.

We can take advantage of the common structure of the loss functions to unify the loss 
functions in Algorithms 10.2.1 to 10.5.1. The performance and value gradients differ 
only in their constant factors. All performance gradients have the common term, 

( )In | ,t ta sθ π θ∇ . This is represented by y_pred in the policy log probability loss 
function, logp_loss(). The factor to the common term, ( )In | ,t ta sθ π θ∇ , depends 
on which algorithm and is implemented as y_true. Table 10.6.1 shows the values 
of y_true. The remaining term is the weighted gradient of entropy, ( )( )| ,t tH a sθβ π θ∇
. It is implemented as the product of beta and entropy in the logp_loss() function. 
Only A2C uses this term, so by default, beta=0.0. For A2C, beta=0.9.

Listing 10.6.3, policygradient-car-10.1.1.py: The loss functions of logp and 
value networks.

# logp loss, the 3rd and 4th variables (entropy and beta) are needed
# by A2C so we have a different loss function structure
def logp_loss(self, entropy, beta=0.0):
    def loss(y_true, y_pred):
        return -K.mean((y_pred * y_true) + (beta * entropy), ax 
is=-1)

    return loss

# typical loss function structure that accepts 2 arguments only
# this will be used by value loss of all methods except A2C
def value_loss(self, y_true, y_pred):
    return -K.mean(y_pred * y_true, axis=-1)

Algorithm y_true of logp_loss y_true of value_loss

10.2.1 REINFORCE t
tRγ

Not applicable

10.3.1 REINFORCE with baseline tγ δ tγ δ

10.4.1 Actor-Critic tγ δ tγ δ

10.5.1 A2C ( )( ),t vR V s θ− tR

Table 10.6.1: y_true value of logp_loss and value_loss
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Similarly, the value loss functions of Algorithms 10.3.1 and 10.4.1 have the same 
structure. The value loss functions are implemented in Keras as value_loss() as 
shown in Listing 10.6.3. The common gradient factor ( ),

v t vV sθ θ∇  is represented 
by the tensor y_pred. The remaining factor is represented by y_true. The y_true 
values are also shown in Table 10.6.1. REINFORCE does not use a value function. 
A2C uses the MSE loss function to learn the value function. In A2C, y_true 
represents the target value or ground truth.

Listing 10.6.4, policygradient-car-10.1.1.py shows us, REINFORCE, 
REINFORCE with baseline, and A2C are trained by episode. The appropriate 
return is computed first before calling the main train routine in Listing 10.6.5:

# train by episode (REINFORCE, REINFORCE with baseline
# and A2C use this routine to prepare the dataset before
# the step by step training)
def train_by_episode(self, last_value=0):
    if self.args.actor_critic:
        print("Actor-Critic must be trained per step")
        return
    elif self.args.a2c:
        # implements A2C training from the last state
        # to the first state
        # discount factor
        gamma = 0.95
        r = last_value
        # the memory is visited in reverse as shown
        # in Algorithm 10.5.1
        for item in self.memory[::-1]:
            [step, state, next_state, reward, done] = item
            # compute the return
            r = reward + gamma*r
            item = [step, state, next_state, r, done]
            # train per step
            # a2c reward has been discounted
            self.train(item)

        return

    # only REINFORCE and REINFORCE with baseline
    # use the ff codes
    # convert the rewards to returns
    rewards = []
    gamma = 0.99
    for item in self.memory:
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        [_, _, _, reward, _] = item
        rewards.append(reward)
    
    # compute return per step
    # return is the sum of rewards from t til end of episode
    # return replaces reward in the list
    for i in range(len(rewards)):
        reward = rewards[i:]
        horizon = len(reward)
        discount =  [math.pow(gamma, t) for t in range(horizon)]
        return_ = np.dot(reward, discount)
        self.memory[i][3] = return_

    # train every step
    for item in self.memory:
        self.train(item, gamma=gamma)

Listing 10.6.5, policygradient-car-10.1.1.py shows us the main train routine 
used by all the policy gradient algorithms. Actor-critic calls this every experience 
sample while the rest call this during train per episode routine in Listing 10.6.4:

# main routine for training as used by all 4 policy gradient
# methods
def train(self, item, gamma=1.0):
    [step, state, next_state, reward, done] = item

    # must save state for entropy computation
    self.state = state

    discount_factor = gamma**step

    # reinforce-baseline: delta = return - value
    # actor-critic: delta = reward - value + discounted_next_value
    # a2c: delta = discounted_reward - value
    delta = reward - self.value(state)[0]

    # only REINFORCE does not use a critic (value network)
    critic = False
    if self.args.baseline:
        critic = True
    elif self.args.actor_critic:
        # since this function is called by Actor-Critic
        # directly, evaluate the value function here
        critic = True
        if not done:
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            next_value = self.value(next_state)[0]
            # add  the discounted next value
            delta += gamma*next_value
    elif self.args.a2c:
        critic = True
    else:
        delta = reward

    # apply the discount factor as shown in Algortihms
    # 10.2.1, 10.3.1 and 10.4.1
    discounted_delta = delta * discount_factor
    discounted_delta = np.reshape(discounted_delta, [-1, 1]) 
    verbose = 1 if done else 0

    # train the logp model (implies training of actor model
    # as well) since they share exactly the same set of
    # parameters
    self.logp_model.fit(np.array(state),
                        discounted_delta,
                        batch_size=1,
                        epochs=1,
                        verbose=verbose)
        
    # in A2C, the target value is the return (reward
    # replaced by return in the train_by_episode function)
    if self.args.a2c:
        discounted_delta = reward
        discounted_delta = np.reshape(discounted_delta, [-1, 1])

    # train the value network (critic)
    if critic:
        self.value_model.fit(np.array(state),
                             discounted_delta,
                             batch_size=1,
                             epochs=1,
                             verbose=verbose)

With all network models and loss functions in place, the last part is the training 
strategy, which is different for each algorithm. Two train functions are used as 
shown in Listings 10.6.4 and 10.6.5. Algorithms 10.2.1, 10.3.1, and 10.5.1 wait for 
a complete episode to finish before training, so it runs both train_by_episode() 
and train(). The complete episode is saved in self.memory. Actor-Critic Algorithm 
10.4.1 trains per step and only runs train(). 
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Each algorithm processes its episode trajectory in a different way.

Algorithm y_true formula y_true in Keras
10.2.1 REINFORCE t

tRγ
reward * discount_factor

10.3.1 REINFORCE 
with baseline

tγ δ (reward - self.value(state)[0]) * 
discount_factor

10.4.1 Actor-Critic tγ δ (reward - self.value(state)[0] 
+  gamma*next_value) * discount_
factor

10.5.1 A2C ( )( ),t vR V s θ−

and tR

(reward - self.value(state)[0])

and
reward

Table 10.6.2: y_true value in Table 10.6.1

For REINFORCE methods and A2C, the reward is actually the return as computed in 
train_by_episode(). discount_factor = gamma**step.

Both REINFORCE methods compute the return, 
0
rT k

t t kk
R γ +=
=∑ , by replacing the 

reward value in the memory as:

    # only REINFORCE and REINFORCE with baseline
    # use the ff codes
    # convert the rewards to returns
    rewards = []
    gamma = 0.99
    for item in self.memory:
        [_, _, _, reward, _] = item
        rewards.append(reward)
    
    # compute return per step
    # return is the sum of rewards from t til end of episode
    # return replaces reward in the list
    for i in range(len(rewards)):
        reward = rewards[i:]
        horizon = len(reward)
        discount =  [math.pow(gamma, t) for t in range(horizon)]
        return_ = np.dot(reward, discount)
        self.memory[i][3] = return_

This then trains the policy (actor) and value models (with baseline only) for each step 
beginning with the first step.
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The training strategy of A2C is different in the sense that it computes gradients from 
the last step to the first step. Hence, the return accumulates beginning from the last 
step reward or the last next state value:

        # the memory is visited in reverse as shown
        # in Algorithm 10.5.1
        for item in self.memory[::-1]:
            [step, state, next_state, reward, done] = item
            # compute the return
            r = reward + gamma*r
            item = [step, state, next_state, r, done]
            # train per step
            # a2c reward has been discounted
            self.train(item)

The reward variable in the list is also replaced by return. It is initialized by reward 
if the terminal state is reached (that is, the car touches the flag) or the next state value 
for non-terminal states:

v = 0 if reward > 0 else agent.value(next_state)[0]

In the Keras implementation, all the routines that we mentioned are implemented 
as methods in the PolicyAgent class. The role of the PolicyAgent is to represent 
the agent implementing policy gradient methods including building and training the 
network models and predicting the action, log probability, entropy, and state value.

Following listing shows how one episode unfolds when the agent executes and trains 
the policy and value models. The for loop is executed for 1000 episodes. An episode 
terminates upon reaching 1000 steps or when the car touches the flag. The agent 
executes the action predicted by the policy at every step. After each episode or step, 
the training routine is called.

Listing 10.6.6, policygradient-car-10.1.1.py: The agent runs for 1000 episodes 
to execute the action predicted by the policy at every step and perform training:

# sampling and fitting
for episode in range(episode_count):
    state = env.reset()
    # state is car [position, speed]
    state = np.reshape(state, [1, state_dim])
    # reset all variables and memory before the start of
    # every episode
    step = 0 
    total_reward = 0 
    done = False
    agent.reset_memory()
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    while not done:
        # [min, max] action = [-1.0, 1.0]
        # for baseline, random choice of action will not move
        # the car pass the flag pole
        if args.random:
            action = env.action_space.sample()
        else:
            action = agent.act(state)
        env.render()
        # after executing the action, get s', r, done
        next_state, reward, done, _ = env.step(action)
        next_state = np.reshape(next_state, [1, state_dim])
        # save the experience unit in memory for training
        # Actor-Critic does not need this but we keep it anyway.
        item = [step, state, next_state, reward, done]
        agent.remember(item)

        if args.actor_critic and train:
            # only actor-critic performs online training
            # train at every step as it happens
            agent.train(item, gamma=0.99)
        elif not args.random and done and train:
            # for REINFORCE, REINFORCE with baseline, and A2C
            # we wait for the completion of the episode before 
            # training the network(s)
            # last value as used by A2C
            v = 0 if reward > 0 else agent.value(next_state)[0]
            agent.train_by_episode(last_value=v)

        # accumulate reward
        total_reward += reward
        # next state is the new state
        state = next_state
        step += 1
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Performance evaluation of policy gradient 
methods
The four policy gradients methods were evaluated by training the agent for 1,000 
episodes. We define 1 training session as 1,000 episodes of training. The first 
performance metric is measured by accumulating the number of times the car 
reached the flag in 1,000 episodes. Figures 10.7.1 to 10.7.4 shows five training sessions 
per method. 

In this metric, A2C reached the flag with the greatest number of times followed by 
REINFORCE with baseline, Actor-Critic, and REINFORCE. The use of baseline or 
critic accelerates the learning. Note that these are training sessions with the agent 
continuously improving its performance. There were cases in the experiments 
where the agent's performance did not improve with time.

The second performance metric is based on the requirement that the 
MountainCarContinuous-v0 is considered solved if the total reward per episode 
is at least 90.0. From the five training sessions per method, we selected one training 
session with the highest total reward for the last 100 episodes (episodes 900 to 
999). Figures 10.7.5 to 10.7.8 show the results of the four policy gradient methods. 
REINFORCE with baseline is the only method that was able to consistently achieve 
a total reward of about 90 after 1,000 episodes of training. A2C has the second-best 
performance but could not consistently reach at least 90 for the total rewards.

Figure 10.7.1: The number of times the mountain car reached the flag using REINFORCE method
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Figure 10.7.2: The number of times the mountain car reached the flag using REINFORCE with baseline method

Figure 10.7.3: The number of times the mountain car reached the flag using the Actor-Critic method
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Figure 10.7.4: The number of times the mountain car reached the flag using the A2C method

Figure 10.7.5: Total rewards received per episode using REINFORCE method
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Figure 10.7.6: Total rewards received per episode using REINFORCE with baseline method.

Figure 10.7.7: Total rewards received per episode using the Actor-Critic method
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Figure 10.7.8: The total rewards received per episode using the A2C method

In the experiments conducted, we used the same learning rate, 1e-3, for log 
probability and value networks optimization. The discount factor is set to 0.99, 
except for A2C which is easier to train at a 0.95 discount factor.

The reader is encouraged to run the trained network by executing:

$ python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 --actor_weights=actor_weights.h5

Following table shows other modes of running policygradient-car-10.1.1.py. 
The weights file (that is, *.h5) can be replaced by your own pre-trained weights file. 
Please consult the code to see the other potential options:

Purpose Run

Train REINFORCE 
from scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

Train REINFORCE 
with baseline from 
scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -b

Train Actor-Critic 
from scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -a

Train A2C from 
scratch

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 -c
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Train REINFORCE 
from previously 
saved weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5 --train

Train REINFORCE 
with baseline from 
previously saved 
weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -b --train

Train Actor-Critic 
from previously 
saved weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -a --train

Train A2C from 
previously saved 
weights

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5

--actor_weights=actor_weights.h5

--value_weights=value_weights.h5 -c --train

Table 10.7.1: Different options in running policygradient-car-10.1.1.py

As a final note, the implementation of the policy gradient methods in Keras has 
some limitations. For example, training the actor model requires resampling the 
action. The action is first sampled and applied to the environment to observe the 
reward and next state. Then, another sample is taken for training the log probability 
model. The second sample is not necessarily the same as the first one, but the reward 
that is used for training comes from the first sampled action, which can introduce 
stochastic error in the computation of gradients.

The good news is Keras is gaining a lot of support from TensorFlow in the form 
of tf.keras. Transitioning from Keras to a more flexible and powerful machine 
learning library, like TensorFlow, has been made a lot easier. If you started with 
Keras and wanted to build low-level custom machine learning routines, the APIs 
of Keras and tf.keras share strong similarities.

There is a small learning curve in using Keras in TensorFlow. Furthermore, in tf.
keras, you're able to take advantage of the new easy to use Dataset and Estimators 
APIs of TensorFlow. This simplifies a lot of the code and model reuse that ends 
up with a clean pipeline. With the new eager execution mode of TensorFlow, it 
becomes even easier to implement and debug Python codes in tf.keras and 
TensorFlow. Eager execution allows the execution of codes without building 
a computational graph as we did in this book. It also allows code structures 
similar to a typical Python program.



Chapter 10

[ 341 ]

Conclusion
In this chapter, we've covered the policy gradient methods. Starting with the policy 
gradient theorem, we formulated four methods to train the policy network. The 
four methods, REINFORCE, REINFORCE with baseline, Actor-Critic, and A2C 
algorithms were discussed in detail. We explored how the four methods could be 
implemented in Keras. We then validated the algorithms by examining the number 
of times the agent successfully reached its goal and in terms of the total rewards 
received per episode.

Similar to Deep Q-Network [2] that we discussed in the previous chapter, there 
are several improvements that can be done on the fundamental policy gradient 
algorithms. For example, the most prominent one is the A3C [3] which is a multi-
threaded version of A2C. This enables the agent to get exposed to different 
experiences simultaneously and to optimize the policy and value networks 
asynchronously. However, in the experiments conducted by OpenAI, https://
blog.openai.com/baselines-acktr-a2c/, there is no strong advantage of A3C 
over A2C since the former could not take advantage of the strong GPUs available 
nowadays.

Given that this is the end of the book, it's worth noting that the area of deep learning 
is huge, and to cover all the advances in one book like this is impossible. What we've 
done is carefully selected the advanced topics that I believe will be useful in a wide 
range of applications and that you, the reader will be able to easily build on. The 
implementations in Keras that have been illustrated throughout this book will allow 
you to carry on and apply the techniques in your own work and research.
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